Decrypt The Mystery Of 12080-32-9

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Category: alcohols-buliding-blocks, illustrating the importance and wide applicability of this compound(12080-32-9).

Category: alcohols-buliding-blocks. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about Cyclometalated Platinum(II) Complexes with Mesoionic Dibenzofuranyl-1,2,3-triazol-4-ylidene Ligands: Synthesis, Characterization and Photophysical Properties. Author is Soellner, Johannes; Strassner, Thomas.

Platinum(II) complexes with mesoionic C-C*-cyclometalating 1,2,3-triazolylidene ligands are highly efficient phosphorescent emitters. Herein we report a series of this type bearing dibenzofuranyl-substituted carbenes along with different β-diketonate auxiliary ligands. They show luminescence in the green region of the visible spectrum and quantum yields of up to 78% at room temperature The proposed mol. structures were verified by NMR spectroscopy and x-ray diffraction experiments which prove the formation of the mesoionic carbene. Addnl., DFT calculations and cyclic voltammetry measurements were used to rationalize the observed photophys. properties of the reported complexes.

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Category: alcohols-buliding-blocks, illustrating the importance and wide applicability of this compound(12080-32-9).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Archives for Chemistry Experiments of 12080-32-9

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Reference of Dichloro(1,5-cyclooctadiene)platinum(II), illustrating the importance and wide applicability of this compound(12080-32-9).

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about Synthesis and transition metal complexes of 1,1′-bis(diphenylethynylphosphino)ferrocene.Reference of Dichloro(1,5-cyclooctadiene)platinum(II).

The new ferrocene based bisphosphine [Fe{C5H4P(CCPh)2}2] (1) was synthesized in 82% yield by the treatment of bis(dichlorophosphino)ferrocene [Fe(C5H4PCl2)2] with four equivalent of lithium phenylacetylide. The reactions of 1 with aqueous H2O2, elemental sulfur or selenium afforded bis(chalcogenide) derivatives, [Fe{C5H4P(E)(CCPh)2}2] (2 E = O, 3 E = S, 4 E = Se). The reaction of 1 with [M(NC5H11)2(CO)4] (M = Mo, W), [RuCp(PPh3)2Cl] and [M(COD)Cl2] (M = Pd, Pt) resulted in the formation of the resp. chelate complexes, [Fe{C5H4P(CCPh)2}2{M(CO)4}] (5 M = Mo, 6 M = W), [Fe{C5H4P(CCPh)2}2{RuCp(Cl)}] (8) and [Fe{C5H4P(CCPh)2}2{MCl2}] (9 M = Pd, 10 M = Pt), whereas the reaction of 1 with [Ru(η6-p-cymene)Cl2]2 and [AuCl(SMe2)] yielded the corresponding bimetallic complexes [Fe{C5H4P(CCPh)2}2{RuCl2(η6-p-cymene)}2] (7) and [Fe{C5H4P(CCPh)2}2{AuCl}2] (15). The reactions between 1 and CuX in equimolar ratios also yielded binuclear complexes, [Fe{C5H4P(CCPh)2}2{CuX}2] (11 X = Cl, 12 X = Br, 13 X = I), whereas [Cu(CH3CN)4]BF4 yielded the cationic complex [(Fe{C5H4P(CCPh)2}2)2Cu]BF4 (14). All the compounds were characterized by spectroscopic methods and the structures of complexes 1, 5, 6, 8, 10, 13 and 14 were confirmed by single crystal x-ray diffraction studies.

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Reference of Dichloro(1,5-cyclooctadiene)platinum(II), illustrating the importance and wide applicability of this compound(12080-32-9).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chemical Research in 12080-32-9

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Related Products of 12080-32-9, illustrating the importance and wide applicability of this compound(12080-32-9).

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about Room-Temperature Phosphorescent Platinum(II) Alkynyls with Microsecond Lifetimes Bearing a Strong-Field Pincer Ligand, the main research direction is tetracoordinate platinum imidazolylcarbazolide complex preparation electrochem OLED; crystal structure tetracoordinate platinum imidazolylcarbazolide complex; mol structure tetracoordinate platinum imidazolylcarbazolide complex; imidazolylcarbazolide ligand preparation cyclometalation platinum acetylide complex; density functional theory; luminescence; pincer ligand; platinum; triplet state.Related Products of 12080-32-9.

The use of organometallic triplet emitters in organic light emitting diodes (OLEDs) is motivated by the premise of efficient intersystem crossing leading to unit internal quantum efficiencies. However, since most devices are based on solid-state components, an inherent limitation to square-planar Pt(II) phosphors is their tendency toward aggregation-based quenching. Here, a new class of emissive, four-coordinate Pt(II) species based on the bisimidazolyl carbazolide (BIMCA) ligand is introduced, which displays highly efficient, long-lived solid-state phosphorescence at room temperature A set of four BIMCAPt Ph acetylides were synthesized that emit in the green (λmax=507-540 nm) with >60% quantum yield and millisecond lifetimes. The structures of the resulting species reveal a nonplanar structure imposed by steric clashes between BIMCA and the iodo or alkynyl co-ligand. Ground-state and photophys. characterization are presented. D. functional theory calculations indicate that the BIMCA ligand dominates the frontier orbitals along with the 1st Franck-Condon singlet and triplet excited states.

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Related Products of 12080-32-9, illustrating the importance and wide applicability of this compound(12080-32-9).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Application of 12080-32-9

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Computed Properties of C8H12Cl2Pt, illustrating the importance and wide applicability of this compound(12080-32-9).

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Bimetallic Platinum Group Complexes of a Macrocyclic Pyrazolate/NHC Hybrid Ligand, published in 2021-09-13, which mentions a compound: 12080-32-9, mainly applied to macrocyclic calix imidazolylidenepyrazolate bimetallic platinum palladium NHC carbene preparation; pyrazolate macrocyclic NHC hybrid bimetallic platinum palladium preparation structure; crystal mol structure macrocyclic calix imidazolylidenepyrazolate carbene platinum palladium, Computed Properties of C8H12Cl2Pt.

Authors present the synthesis, structural characterization, and photophys. properties of dinuclear PdII and PtII-NHC complexes Pd2L(PF6)2 and Pt2L(PF6)2 based on a macrocyclic calix[4]imidazolylidene[2]pyrazolate ligand obtained by in situ deprotonation of the tetraimidazolium salt H6L(PF6)4. The PtII congener was also prepared by transmetalation from previously published AgI pillarplex Ag8L2(PF6)4. NMR spectroscopy (1H, 13C, 195Pt) combined with SC-XRD studies elucidated the structure of the PdII and PtII complexes in the solid state and in solution The d8 metal ions of both congeners are coordinated in a slightly distorted square-planar arrangement. Similar to the previously reported NiII complex Ni2L(PF6)2, the heavier metal homologues adopt a bent, saddle-shaped structure. As observed for structurally similar PtII complexes in solution, bimetallic Pt2L(PF6)2 showed photoluminescence in the blue region. In the solid state, emission was observed at a similar energy with unusually short lifetimes compared to other monometallic PtII complexes. DFT and TDDFT studies shed light on the nature of the most bathochromic transitions, suggesting a significant pyrazolate- and NHC-centered π-π* character.

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Computed Properties of C8H12Cl2Pt, illustrating the importance and wide applicability of this compound(12080-32-9).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The origin of a common compound about 12080-32-9

This literature about this compound(12080-32-9)Computed Properties of C8H12Cl2Pthas given us a lot of inspiration, and I hope that the research on this compound(Dichloro(1,5-cyclooctadiene)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Yilmaz, Ismail; Acar-Selcuki, Nursel; Coles, Simon J.; Pekdemir, Fatih; Sengul, Abdurrahman published the article 《Spectroscopic, structural and DFT studies of luminescent Pt(II) and Ag(I) complexes with an asymmetric 2,2′-bipyridine chelating ligand》. Keywords: carbomethoxybipyridine preparation platinum silver complexation; crystal mol structure methylcarbomethoxybipyridine platinum silver complex; DFT luminescent platinum silver methylcarbomethoxybipyridine asym bipyridine chelating ligand.They researched the compound: Dichloro(1,5-cyclooctadiene)platinum(II)( cas:12080-32-9 ).Computed Properties of C8H12Cl2Pt. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:12080-32-9) here.

A new unsym. substituted 2,2′-bipyridine ligand, 5-methyl-5′-carbomethoxy-2,2′-bipyridine (L) was isolated from the dry distillation of the copper(II) complex, mono-aqua-bis(trans-5-methyl-pyridine-2-carboxylato-N,O)copper(II). The ligand was fully characterized. The spectroscopic and single-crystal x-ray diffraction (SCXRD) studies of the coordination compounds of the ligand with platinum(II) and silver(I); cis-Pt(L)Cl2 (1) and [Ag(L)2]PF6 (2), resp. are reported. In 1, the Pt center coordinates to tertiary N atoms of the ligand and two chloride ions to form a neutral square-planar coordination sphere, while in 2, the Ag(I) center is coordinated by two ligands through N atoms to generate a cationic flattened tetrahedron geometry in which two mean planes intersect each other at 50.93°. The pyridine rings are nearly coplanar as revealed by the torsion angle of N2-C7-C6-N1 1.32(5)°. In both complexes, L acts as a chelating ligand through pyridyl N atoms. In 1, the mol. units are stacked in a head-to-tail fashion with a Pt···Pt separation of 3.5 Å. Supramol. self-assembly of the mol. units by extensive intermol. contacts through C-H···Cl and C-H···O between the adjacent units results in an infinite two-dimensional flattened-out herringbone structure in the crystalline state. In 2, the mol. units are interconnected with each other by C-H···O contacts between the adjacent units running parallel to each other. Both complexes are fluorescent in solution and have emission maxima in the UV-Vis regions, which is a very important property for optoelectronic applications. DFT (d. functional theory) and TD-DFT (time-dependent-DFT) calculations were performed at B3LYP/6-311+G(d,p)/LANL2DZ level to explore structural, electronic, and spectroscopic properties to compare with the exptl. results. The MOs were carried out with DFT at the same level.

This literature about this compound(12080-32-9)Computed Properties of C8H12Cl2Pthas given us a lot of inspiration, and I hope that the research on this compound(Dichloro(1,5-cyclooctadiene)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Research on new synthetic routes about 12080-32-9

This literature about this compound(12080-32-9)Safety of Dichloro(1,5-cyclooctadiene)platinum(II)has given us a lot of inspiration, and I hope that the research on this compound(Dichloro(1,5-cyclooctadiene)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Safety of Dichloro(1,5-cyclooctadiene)platinum(II). The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about A Germylene Supported by Two 2-Pyrrolylphosphane Groups as Precursor to PGeP Pincer Square-Planar Group 10 Metal(II) and T-Shaped Gold(I) Complexes. Author is Cabeza, Javier A.; Fernandez, Israel; Fernandez-Colinas, Jose M.; Garcia-Alvarez, Pablo; Laglera-Gandara, Carlos J..

An efficient synthesis of 2-di-tert-butylphosphinomethylpyrrole (HpyrmPtBu2), by treating 2-dimethylaminomethylpyrrole (HpyrmNMe2) with tBu2PH at 135° in the absence of any solvent, has allowed the preparation of the new PGeP germylene Ge(pyrmPtBu2)2 (1), by treating [GeCl2(dioxane)] with LipyrmPtBu2, in which the Ge atom is stabilized by intramol. interactions with one (solid state) or both (solution) of its phosphine groups. Reactions of germylene 1 with Group 10 metal dichlorido complexes containing easily displaceable ligands have led to [MCl{κ3P,Ge,P-GeCl(pyrmPtBu2)2}] [M = Ni (2), Pd (3), Pt (4)], which have an unflawed square-planar metal environment. Treatment of germylene 1 with [AuCl(tht)] (tht = tetrahydrothiophene) rendered [Au{κ3P,Ge,P-GeCl(pyrmPtBu2)2}] (5), which is a rare case of a T-shaped gold(I) complex. The hydrolysis of 5 gave the linear gold(I) derivative [Au(κP-HpyrmPtBu2)2]Cl (6). Complexes 2-5 contain a PGeP pincer chloridogermyl ligand that arises from the insertion of the Ge atom of germylene 1 into a M-Cl bond of the corresponding metal reagent. The bonding in these mols. has been studied by DFT/NBO/QTAIM calculations These results demonstrate that the great flexibility of germylene 1 makes it a better precursor to PGeP pincer complexes than the previously known germylenes of this type.

This literature about this compound(12080-32-9)Safety of Dichloro(1,5-cyclooctadiene)platinum(II)has given us a lot of inspiration, and I hope that the research on this compound(Dichloro(1,5-cyclooctadiene)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Let`s talk about compounds: 12080-32-9

This literature about this compound(12080-32-9)Computed Properties of C8H12Cl2Pthas given us a lot of inspiration, and I hope that the research on this compound(Dichloro(1,5-cyclooctadiene)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: Dichloro(1,5-cyclooctadiene)platinum(II)(SMILESS: C1=CCC/C=CCC/1.[Pt+2].[Cl-].[Cl-],cas:12080-32-9) is researched.Computed Properties of C38H34N2O4P2. The article 《Group 10 metal complexes with a tetradentate thiosemicarbazonate ligand: Synthesis, crystal structures and computational insights into the catalysis for C-C coupling via Mizoroki-Heck reaction》 in relation to this compound, is published in Journal of Molecular Structure. Let’s take a look at the latest research on this compound (cas:12080-32-9).

Mononuclear complexes were synthesized by reactions of Group 10 metal ions with bis(4-phenyl-3-thiosemicarbazone) (H2bPht), affording compounds [MII(bPht)] (M = Ni, Pd and Pt). Their characterization involved FTIR, UV-visible, 1H NMR, CV, DPV and elemental anal. Also, the crystal structures of all complexes were determined, showing that the thiosemicarbazonate ligand is coordinated as a tetradentate N,N,S,S-donor forming three five-membered chelate rings. The catalytic activity of [MII(bPht)] in Heck’s C-C coupling reaction using styrene and iodobenzene to obtain stilbenes was evaluated. It was verified that the NiII and PtII complexes present low catalytic activity, while the PdII complex showed a conversion of 99% within 24 h. Trans-stilbene was identified as the major product of the coupling reaction, up to 90%. DFT studies were also performed to better understand the catalytic behavior of these complexes giving support for a new route for Mizoroki-Heck reaction.

This literature about this compound(12080-32-9)Computed Properties of C8H12Cl2Pthas given us a lot of inspiration, and I hope that the research on this compound(Dichloro(1,5-cyclooctadiene)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Application of 12080-32-9

This literature about this compound(12080-32-9)Application In Synthesis of Dichloro(1,5-cyclooctadiene)platinum(II)has given us a lot of inspiration, and I hope that the research on this compound(Dichloro(1,5-cyclooctadiene)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Pickl, Thomas; Poethig, Alexander published the article 《Bimetallic Platinum Group Complexes of a Macrocyclic Pyrazolate/NHC Hybrid Ligand》. Keywords: macrocyclic calix imidazolylidenepyrazolate bimetallic platinum palladium NHC carbene preparation; pyrazolate macrocyclic NHC hybrid bimetallic platinum palladium preparation structure; crystal mol structure macrocyclic calix imidazolylidenepyrazolate carbene platinum palladium.They researched the compound: Dichloro(1,5-cyclooctadiene)platinum(II)( cas:12080-32-9 ).Application In Synthesis of Dichloro(1,5-cyclooctadiene)platinum(II). Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:12080-32-9) here.

Authors present the synthesis, structural characterization, and photophys. properties of dinuclear PdII and PtII-NHC complexes Pd2L(PF6)2 and Pt2L(PF6)2 based on a macrocyclic calix[4]imidazolylidene[2]pyrazolate ligand obtained by in situ deprotonation of the tetraimidazolium salt H6L(PF6)4. The PtII congener was also prepared by transmetalation from previously published AgI pillarplex Ag8L2(PF6)4. NMR spectroscopy (1H, 13C, 195Pt) combined with SC-XRD studies elucidated the structure of the PdII and PtII complexes in the solid state and in solution The d8 metal ions of both congeners are coordinated in a slightly distorted square-planar arrangement. Similar to the previously reported NiII complex Ni2L(PF6)2, the heavier metal homologues adopt a bent, saddle-shaped structure. As observed for structurally similar PtII complexes in solution, bimetallic Pt2L(PF6)2 showed photoluminescence in the blue region. In the solid state, emission was observed at a similar energy with unusually short lifetimes compared to other monometallic PtII complexes. DFT and TDDFT studies shed light on the nature of the most bathochromic transitions, suggesting a significant pyrazolate- and NHC-centered π-π* character.

This literature about this compound(12080-32-9)Application In Synthesis of Dichloro(1,5-cyclooctadiene)platinum(II)has given us a lot of inspiration, and I hope that the research on this compound(Dichloro(1,5-cyclooctadiene)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Interesting scientific research on 12080-32-9

This literature about this compound(12080-32-9)Category: alcohols-buliding-blockshas given us a lot of inspiration, and I hope that the research on this compound(Dichloro(1,5-cyclooctadiene)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Category: alcohols-buliding-blocks. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about Photophysical Properties of Phosphorescent Mono- and Bimetallic Platinum(II) Complexes with C C* Cyclometalating NHC Ligands. Author is Pinter, Piermaria; Soellner, Johannes; Strassner, Thomas.

Due to their square-planar geometry, Pt(II) complexes demonstrate an extraordinary and unique photophys. behavior. The photophys. properties of monometallic Pt(II) complexes depend on the concentration, while in bimetallic Pt(II) complexes they depend on the distance between the metal centers. The authors reveal a correlation between the electronic and photophys. properties of monomeric monometallic Pt(II) complexes and their aggregates with the corresponding bimetallic complexes.

This literature about this compound(12080-32-9)Category: alcohols-buliding-blockshas given us a lot of inspiration, and I hope that the research on this compound(Dichloro(1,5-cyclooctadiene)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

An update on the compound challenge: 12080-32-9

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Formula: C8H12Cl2Pt, illustrating the importance and wide applicability of this compound(12080-32-9).

Formula: C8H12Cl2Pt. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about Classics Meet Classics: Theoretical and Experimental Studies of Halogen Bonding in Adducts of Platinum(II) 1,5-Cyclooctadiene Halide Complexes with Diiodine, Iodoform, and 1,4-Diiodotetrafluorobenzene. Author is Bulatova, Margarita; Ivanov, Daniil M.; Haukka, Matti.

Complexes of PtX2COD (X = Cl, Br, I; COD = 1,5-cyclooctadiene) were cocrystd. with classical halogen-bond donors (CHI3, I2, and 1,4-diiodotetrafluorobenzene (FIB)), resulting in noncovalently bound supramol. aggregates of various lengths-from heterotrimers to polymers. The influence of halides in the complexes on the geometry and strength of the halogen bond (XB) was studied both exptl. by single-crystal XRD and theor. by quantum chem. methods such as noncovalent interaction plots (NCI-plot), electrostatic potential (ESP) surface anal., and a combination of electron localization function (ELF) and quantum theory of atoms in mols. (QTAIM) analyses. It was shown that strength of XB interactions in the adducts increases in the order CHI3 > FIB > I2. Although halogen bonding was found to be the main preorganizing force in the structures, in the case of FIB adducts a rare Pt···I interaction was involved in addnl. stabilization of the structure. Hence, fine-tuning of halogen bonding can influence the length of the polymer, as well as the strength and directionality of interactions in the adduct. Since Hassel’s already classical work on charge-transfer interactions, halogen bonding has attracted a great deal of attention as a potentially useful instrument to organize mols. Due to the tunability, relative strength, and directionality, halogen bonding has been used as a self-assembly tool in crystal engineering. In this study classics meet classics: classical halogen bond donors XBD (such as mol. iodine, iodoform, and FIB) and classical synthons PtX2COD were used to create metallopolymeric adducts. In the obtained systems the XBD influenced the geometry (1D or 2D) and the length (heterotrimer or polymer) of the adduct. To understand differences among the obtained systems, they were further studied with computational methods, and addnl. stabilizing weak interactions were discovered. Caution: COD is hazardous to health and should be handled with care.

In addition to the literature in the link below, there is a lot of literature about this compound(Dichloro(1,5-cyclooctadiene)platinum(II))Formula: C8H12Cl2Pt, illustrating the importance and wide applicability of this compound(12080-32-9).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts