Dalponte Dallabona, Ithiara team published research on International Journal of Biological Macromolecules in 2020 | 24034-73-9

Recommanded Product: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 24034-73-9, formula is C20H34O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Recommanded Product: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Dalponte Dallabona, Ithiara;de Lima, Gabriel Goetten;Cestaro, Beatriz Isabella;Tasso, Ivisson de Souza;Paiva, Thainnane Silva;Laureanti, Emanuele Joana Gbur;Jorge, Luiz Mario de Matos;da Silva, Bruno Jose Goncalves;Helm, Cristiane Vieira;Mathias, Alvaro Luiz;Jorge, Regina Maria Matos research published 《 Development of alginate beads with encapsulated jabuticaba peel and propolis extracts to achieve a new natural colorant antioxidant additive》, the research content is summarized as follows. This work aims to encapsulate anthocyanins and phenolic compounds extracted from a native Brazilian fruit peel – jabuticaba (Plinia cauliflora (Mart.) Kausel) and propolis from Tubuna (Scaptotrigona bipunctata) stingless bees, with great potential benefits for human health. The alginate encapsulation was conducted by the ionotropic gelation through the dripping into the CaCl2 solution Both raw extracts were characterized by TPC – total phenolic content (Folin-Ciocalteu), AA -antioxidant activity (DPPH and ABTS assays), and TMAC – total monomeric anthocyanin concentration (pH differential method); as well as their resultant mixture (2:1 jabuticaba/propolis). The obtained beads presented highly efficient encapsulation of total polyphenols (∼98%) and monomeric anthocyanins (∼89%), with spherical morphol. and smooth surface obtaining a mean diameter between 200 and 250μm. In vitro release study showed that JPE/alginate beads were completely disintegrated at pH 7.4 (intestinal pH), but they were resistant to gastric pH (1.2) presenting a slow release of about 40% in 240 min. This is the first report that encapsulates the mixture of jabuticaba and propolis extracts and may contribute to the utilization of a great source of bioactive compounds besides the potential pigment of anthocyanins, an alternative to natural and healthy food/beverage colorants.

Recommanded Product: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Delhiraja, Krithika team published research on Environmental Monitoring and Assessment in 2020 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Safety of (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 24034-73-9, formula is C20H34O, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Safety of (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Delhiraja, Krithika;Philip, Ligy research published 《 Characterization of segregated greywater from Indian households-part B: emerging contaminants》, the research content is summarized as follows. Abstract: Emerging contaminants (ECs) have become an increasing area of concern due to the likely impacts of these compounds on human health and the environment. Generally, products which are used for households and personal care activities contribute to major percentage of ECs in household greywater. Not much information on the presence of xenobiotic organic compounds in greywater is currently available. Therefore, the present study focused on the qual. and quant. analyses of emerging contaminants from different classifications of Indian households. The quant. anal. of few selected target pollutants such as phthalic esters, namely di-Et hexyl phthalate, di-Et phthalate, di-Bu phthalate, dioctyl phthalate, triclosan, bisphenol A, caffeine, acetaminophen, 3-Me salicylic acid, 4-octylphenol, and 4-nonylphenol were found to be 0.38 ± 0.39 μg/L, 1.57 ± 1.54 μg/L, 4.77 ± 2.57 μg/L, 0.712 ± 0.17 μg/L, 5.82 ± 1.85 μg/L, 11.08 ± 2.64 μg/L, 2.30 ± 1.19 μg/L 13.18 ± 4.48 μg/L, 3.75 ± 1.90 μg/L, 4.95 ± 2.21 μg/L, and 5.96 μg/L, resp. Risk assessment indicated that 63 compounds identified in the greywater can be considered priority pollutants. Based on the results obtained in the present study, effective zero-discharge liquid system can be designed for different sources of greywater and it can be recycled and reused without much risk. Graphical abstract [graphic not available: see fulltext]

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Safety of (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chen, Ya-Hui team published research on Environmental Toxicology in 2021 | 24034-73-9

Application of C20H34O, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 24034-73-9, formula is C20H34O, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Application of C20H34O

Chen, Ya-Hui;Huang, Ying-Chih;Yang, Shun-Fa;Yen, Hsu-Heng;Tsai, Horng-Der;Hsieh, Ming-Chia;Hsiao, Yi-Hsuan research published 《 Pitavastatin and metformin synergistically activate apoptosis and autophagy in pancreatic cancer cells》, the research content is summarized as follows. Pancreatic cancer is the seventh leading cause of cancer-related deaths globally. Metformin is the standard first-line of treatment for hyperglycemia in Type 2 diabetes, whereas pitavastatin is a cholesterol-lowering drug used to prevent cardiovascular diseases. Both these agents evidently exert anticancer effects on pancreatic cancer; however, it remains unclear whether cotreatment using them has additive or synergistic anticancer effects on pancreatic cancer. Thus, we herein used the ASPC-1 and PANC-1 cells and treated them with metformin and/or pitavastatin. We performed the cell viability assay, transwell migration assay, and cell cycle anal. using flow cytometry. Western blotting was used to determine protein levels. We found that cotreatment with metformin (30 mM) and pitavastatin (10μM) significantly reduced cell viability; caused G0/G1 cell cycle arrest; upregulated the expression levels of Bax, PCNA, cleaved PARP-1, cleaved caspase-3, LC3 II, and p27 Kip1/p21Cip1; and inhibited cell migration. The combination index value for cell viability indicated a synergistic interaction between metformin and pitavastatin. Moreover, cotreating the cells with metformin (30 mM) and pitavastatin (10μM) could preserve mitochondrial function, activate AMPK, and inhibit PI3K/mTOR than treatment with metformin or pitavastatin alone. These findings clearly indicated that metformin plus pitavastatin had a synergistic anticancer effect on pancreatic cancer cells, potentially caused due to the activation of AMPK and inhibition of PI3K/mTOR signaling. Altogether, our results provide that use of metformin plus pitavastatin maybe serve as a chemotherapeutic agent for human pancreatic cancer in future.

Application of C20H34O, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chung, Eunhee team published research on Nutrition Research (New York, NY, United States) in 2021 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Computed Properties of 24034-73-9

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 24034-73-9, formula is C20H34O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Computed Properties of 24034-73-9

Chung, Eunhee;Elmassry, Moamen M.;Cao, Jay J.;Kaur, Gurvinder;Dufour, Jannette M.;Hamood, Abdul N.;Shen, Chwan-Li research published 《 Beneficial effect of dietary geranylgeraniol on glucose homeostasis and bone microstructure in obese mice is associated with suppression of proinflammation and modification of gut microbiome》, the research content is summarized as follows. Geranylgeraniol (GGOH) is found in edible oils such as olive, linseed, and sunflower oils, which have favorable metabolic effects. However, it is unknown whether these physiol. benefits are mediated through the gut microbiome. Thus, the purpose of this study was to test the hypothesis that GGOH supplementation would improve glucose homeostasis and benefit the bone microstructure in obese mice through suppression of inflammation and modification of gut microbiota composition Thirty-six male C57BL/6J mice were divided into 3 groups: a low-fat diet, a high-fat diet (HFD), and an HFD supplemented with 800 mg GGOH/kg diet (GG) for 14 wk. Glucose and insulin tolerance tests were measured at baseline and end of study. The concentrations of adipokine cytokines (resistin, leptin, monocyte chemoattractant protein-1, interleukin-6) were measured via ELISA. Bone microarchitecture and quality were measured by micro-CT. Microbiome anal. was performed using 16S rRNA amplicon sequencing on cecal content. Relative to the HFD group, the GG group: (1) improved glucose tolerance and insulin sensitivity; (2) reduced production of pro-inflammatory adipokines, (3) increased serum procollagen I intact N-terminal propeptide (bone formation marker) concentrations, while decreasing serum collagen type 1 cross-linked C-telopeptide (bone resorption marker) levels, and (4) increased stiffness at both femur and LV-4 and cortical thickness at femoral midshaft. Compared to the HFD group, the GG group had an increased abundance of Butyricicoccus pullicaecorum and decreased Dorea longicatena in the cecal microbiome. Collectively, GGOH improves glucose homeostasis and bone microstructure in obese mice, probably via suppression of pro-inflammation and modification of microbiome composition

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Computed Properties of 24034-73-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chen, Ya-Hui team published research on Environmental Toxicology in 2021 | 24034-73-9

Application of C20H34O, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 24034-73-9, formula is C20H34O, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Application of C20H34O

Chen, Ya-Hui;Huang, Ying-Chih;Yang, Shun-Fa;Yen, Hsu-Heng;Tsai, Horng-Der;Hsieh, Ming-Chia;Hsiao, Yi-Hsuan research published 《 Pitavastatin and metformin synergistically activate apoptosis and autophagy in pancreatic cancer cells》, the research content is summarized as follows. Pancreatic cancer is the seventh leading cause of cancer-related deaths globally. Metformin is the standard first-line of treatment for hyperglycemia in Type 2 diabetes, whereas pitavastatin is a cholesterol-lowering drug used to prevent cardiovascular diseases. Both these agents evidently exert anticancer effects on pancreatic cancer; however, it remains unclear whether cotreatment using them has additive or synergistic anticancer effects on pancreatic cancer. Thus, we herein used the ASPC-1 and PANC-1 cells and treated them with metformin and/or pitavastatin. We performed the cell viability assay, transwell migration assay, and cell cycle anal. using flow cytometry. Western blotting was used to determine protein levels. We found that cotreatment with metformin (30 mM) and pitavastatin (10μM) significantly reduced cell viability; caused G0/G1 cell cycle arrest; upregulated the expression levels of Bax, PCNA, cleaved PARP-1, cleaved caspase-3, LC3 II, and p27 Kip1/p21Cip1; and inhibited cell migration. The combination index value for cell viability indicated a synergistic interaction between metformin and pitavastatin. Moreover, cotreating the cells with metformin (30 mM) and pitavastatin (10μM) could preserve mitochondrial function, activate AMPK, and inhibit PI3K/mTOR than treatment with metformin or pitavastatin alone. These findings clearly indicated that metformin plus pitavastatin had a synergistic anticancer effect on pancreatic cancer cells, potentially caused due to the activation of AMPK and inhibition of PI3K/mTOR signaling. Altogether, our results provide that use of metformin plus pitavastatin maybe serve as a chemotherapeutic agent for human pancreatic cancer in future.

Application of C20H34O, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chung, Eunhee team published research on Nutrition Research (New York, NY, United States) in 2021 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Computed Properties of 24034-73-9

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 24034-73-9, formula is C20H34O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Computed Properties of 24034-73-9

Chung, Eunhee;Elmassry, Moamen M.;Cao, Jay J.;Kaur, Gurvinder;Dufour, Jannette M.;Hamood, Abdul N.;Shen, Chwan-Li research published 《 Beneficial effect of dietary geranylgeraniol on glucose homeostasis and bone microstructure in obese mice is associated with suppression of proinflammation and modification of gut microbiome》, the research content is summarized as follows. Geranylgeraniol (GGOH) is found in edible oils such as olive, linseed, and sunflower oils, which have favorable metabolic effects. However, it is unknown whether these physiol. benefits are mediated through the gut microbiome. Thus, the purpose of this study was to test the hypothesis that GGOH supplementation would improve glucose homeostasis and benefit the bone microstructure in obese mice through suppression of inflammation and modification of gut microbiota composition Thirty-six male C57BL/6J mice were divided into 3 groups: a low-fat diet, a high-fat diet (HFD), and an HFD supplemented with 800 mg GGOH/kg diet (GG) for 14 wk. Glucose and insulin tolerance tests were measured at baseline and end of study. The concentrations of adipokine cytokines (resistin, leptin, monocyte chemoattractant protein-1, interleukin-6) were measured via ELISA. Bone microarchitecture and quality were measured by micro-CT. Microbiome anal. was performed using 16S rRNA amplicon sequencing on cecal content. Relative to the HFD group, the GG group: (1) improved glucose tolerance and insulin sensitivity; (2) reduced production of pro-inflammatory adipokines, (3) increased serum procollagen I intact N-terminal propeptide (bone formation marker) concentrations, while decreasing serum collagen type 1 cross-linked C-telopeptide (bone resorption marker) levels, and (4) increased stiffness at both femur and LV-4 and cortical thickness at femoral midshaft. Compared to the HFD group, the GG group had an increased abundance of Butyricicoccus pullicaecorum and decreased Dorea longicatena in the cecal microbiome. Collectively, GGOH improves glucose homeostasis and bone microstructure in obese mice, probably via suppression of pro-inflammation and modification of microbiome composition

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Computed Properties of 24034-73-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chen, Ruibing team published research on New Phytologist in 2021 | 24034-73-9

HPLC of Formula: 24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 24034-73-9, formula is C20H34O, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. HPLC of Formula: 24034-73-9

Chen, Ruibing;Bu, Yuejuan;Ren, Junze;Pelot, Kyle A.;Hu, Xiangyang;Diao, Yong;Chen, Wansheng;Zerbe, Philipp;Zhang, Lei research published 《 Discovery and modulation of diterpenoid metabolism improves glandular trichome formation, artemisinin production and stress resilience in Artemisia annua》, the research content is summarized as follows. Plants synthesize diverse diterpenoids with numerous functions in organ development and stress resistance. However, the role of diterpenoids in glandular trichome (GT) development and GT-localized biosynthesis in plants remains unknown. Here, the identification of 10 diterpene synthases (diTPSs) revealed the diversity of diterpenoid biosynthesis in Artemisiaannua. Protein-protein interactions (PPIs) between AaKSL1 and AaCPS2 in the plastids highlighted their potential functions in modulating metabolic flux to gibberellins (GAs) or ent-isopimara-7,15-diene-derived metabolites (IDMs) through metabolic engineering. A phenotypic anal. of transgenic plants suggested a complex repertoire of diterpenoids in Artemisia annua with important roles in GT formation, artemisinin accumulation and stress resilience. Metabolic engineering of diterpenoids simultaneously increased the artemisinin yield and stress resistance. Transcriptome and metabolic profiling suggested that bioactive GA4/GA1 promote GT formation. Collectively, these results expand our knowledge of diterpenoids and show the potential of diterpenoids to simultaneously improve both the GT-localized metabolite yield and stress resistance, inplanta.

HPLC of Formula: 24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Calzada, Fernando team published research on Revista Brasileira de Farmacognosia in 2020 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, COA of Formula: C20H34O

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 24034-73-9, formula is C20H34O, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. COA of Formula: C20H34O

Calzada, Fernando;Ramirez-Santos, Jesica;Valdes, Miguel;Garcia-Hernandez, Normand;Pina-Jimenez, Emmanuel;Ordonez-Razo, Rosa Maria research published 《 Evaluation of Acute Oral Toxicity, Brine Shrimp Lethality, and Antilymphoma Activity of Geranylgeraniol and Annona macroprophyllata Leaf Extracts》, the research content is summarized as follows. In this study, we investigated the acute oral toxicity, brine shrimp lethality, and the antilymphoma activity of geranylgeraniol and the ethanolic and petroleum ether extracts of Annona macroprophyllata Donn.Sm., Annonaceae, leaves. Leaves were extracted by maceration with ethanol or petroleum ether. In acute oral toxicity anal., the ethanolic extract had a LD50 of 1587 mg/kg, while the petroleum ether extract had an LD50 of > 3000 mg/kg. This indicated that the petroleum ether extract may be less harmful than the ethanolic extract Furthermore, the petroleum ether extract showed low acute toxicity (category 5), significant brine shrimp lethality, and a high antilymphoma activity. Therefore, petroleum ether extract was purified by preparative thin layer chromatog. to yield geranylgeraniol. The results showed that geranylgeraniol (LC50 = 1.00μg/mL) was more potent than methotrexate (LC50 24.66μg/mL), a known chemotherapy drug. Addnl., geranylgeraniol showed high antilymphoma activity in Balb/c mice injected i.p. with 1 x 106 U-937 of human leukemic monocyte lymphoma cells, resulting in 50% effective inhibitory concentration (EC50) values of 4.38 mg/kg and 3.66 mg/kg for male and female mice, resp. The antilymphoma activity of geranylgeraniol was similar to that of methotrexate (EC50 = 1.07 mg/kg and 1.33 mg/kg, resp.). These findings suggest that geranylgeraniol may serve as a potential natural compound for the treatment of lymphoma.

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, COA of Formula: C20H34O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Barman, Monica team published research on Industrial Crops and Products in 2022 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Synthetic Route of 24034-73-9

Synthetic Route of 24034-73-9, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 24034-73-9, name is (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Barman, Monica;Soren, Monika;Mishra, Chinmaya;Mitra, Adinpunya research published 《 Dehydrated jasmine flowers obtained through natural convective solar drying retain scent volatiles and phenolics – A prospective for added-value utility》, the research content is summarized as follows. Although season-specific, Jasminum spp. are cultivated com. for their sweet-scented flowers and their postharvest utility in various value-added products. However, to ensure year-round availability of quality floral biomass, jasmines are to be dehydrated and stored. In the present study, we attempted to dehydrate fresh jasmine flowers using a custom-made natural convective solar drying and compared the outcome with four widely used drying methods namely, sun drying, shade drying, oven drying and freeze drying. Subsequently, the retention capacities of scent volatiles and phenolics in dehydrated flowers of Jasminum auriculatum and J. sambac were compared. Total phenolic contents (TPC) were found to be high in both freeze dried and natural convective dried samples whereas the antioxidant capacity was high in natural convective dried samples. Phenolic acids viz. protocatechuic acid, vanillic acid, and caffeic acid were detected; these phenolic acids were shown to retain in higher amount in natural convective dried samples. Further, freeze and convective-dried flowers were also shown to retain maximum contents of scent volatiles. These observations suggest that custom-made low-cost natural convective solar dryer could be explored at large scale to obtain good quality dried flowers of Jasminum spp. for added-value utility.

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Synthetic Route of 24034-73-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Basting, Rosanna Tarkany team published research on Natural Product Research in 2021 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Safety of (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 24034-73-9, formula is C20H34O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Safety of (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Basting, Rosanna Tarkany;de Abreu, Pedro Manoel Barreto;Sousa, Ilza Maria de Oliveira;de Carvalho, Joao Ernesto;Carvalho, Paulo Roberto Nogueira;Foglio, Mary Ann research published 《 Bixa orellana L. by-products’ fractions from an industrial process: antiproliferative activity on tumor cells and chemical profile》, the research content is summarized as follows. This study evaluated the phytochem. characterization of Bixa orellana (BO extract) unsaponifiable extract and resulting fractions (F fraction – FF, Geranyl fraction – GF and R fraction- RF) obtained as byproducts of an industrial process investigating in vitro antiproliferative activities in human tumoral cells. The main compounds identified by GC-MS for BO extract were Geranylgeraniol (61.51%); for FF: Geranylgeraniol (70.23%); for GF: Geranylgeraniol (78.92%) and for RF: β-cubebene (27.75%). Quantifications of geranylgeraniol by GC-FID presented the percentage content: BO 27.52%; FF 38.52%; GF 51.44% and RF 1.81%. BO extract showed a significant antiproliferative activity, with GI50 up to 4μg/mL. All fractions had a remarkably similar antiproliferative activity profile (GI50 27-47μg/mL). Data reported herein showed an important cytostatic effect for BO extract, nevertheless this activity is not attributed exclusively to geranylgeraniol. In conclusion, this byproduct becomes of great value, being a potential candidate for development of new anti-tumor ingredients.

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Safety of (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts