Our Top Choice Compound: 16588-26-4

When you point to this article, it is believed that you are also very interested in this compound(16588-26-4)Safety of 3-Bromo-4-chloronitrobenzene and due to space limitations, I can only present the most important information.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Long, Tao; Qi, Xiaofeng; Hassan, Abdirahman; Liang, Qiren; De Brabander, Jef K.; Li, Xiaochun researched the compound: 3-Bromo-4-chloronitrobenzene( cas:16588-26-4 ).Safety of 3-Bromo-4-chloronitrobenzene.They published the article 《Structural basis for itraconazole-mediated NPC1 inhibition》 about this compound( cas:16588-26-4 ) in Nature Communications. Keywords: ovarian cell NPC1 itraconazole sterol sensing domain cholesterol. We’ll tell you more about this compound (cas:16588-26-4).

Niemann-Pick C1, a lysosomal protein of 13 transmembrane helixes and three lumenal domains, exports low-d.-lipoprotein-derived cholesterol from lysosomes. TMs 3-7 of NPC1 comprise the sterol-sensing domain. Previous studies suggest that mutation of the NPC1-SSD or the addition of the anti-fungal drug itraconazole abolishes NPC1 activity in cells. However, the itraconazole binding site and the mechanism of NPC1-mediated cholesterol transport remain unknown. Here, we report a cryo-EM structure of human NPC1 bound to itraconazole, which reveals how this binding site in the center of NPC1 blocks a putative lumenal tunnel linked to the SSD. Functional assays confirm that blocking this tunnel abolishes NPC1-mediated cholesterol egress. Intriguingly, the palmitate anchor of Hedgehog occupies a similar site in the homologous tunnel of Patched, suggesting a conserved mechanism for sterol transport in this family of proteins and establishing a central function of their SSDs.

When you point to this article, it is believed that you are also very interested in this compound(16588-26-4)Safety of 3-Bromo-4-chloronitrobenzene and due to space limitations, I can only present the most important information.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Flexible application of in synthetic route 16588-26-4

When you point to this article, it is believed that you are also very interested in this compound(16588-26-4)Computed Properties of C6H3BrClNO2 and due to space limitations, I can only present the most important information.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Nuclear-substituted derivatives of 4,4′-diaminodiphenyl sulfone》. Authors are Berg, S. S..The article about the compound:3-Bromo-4-chloronitrobenzenecas:16588-26-4,SMILESS:BrC1=C(C=CC(=C1)[N+](=O)[O-])Cl).Computed Properties of C6H3BrClNO2. Through the article, more information about this compound (cas:16588-26-4) is conveyed.

The therapeutic effect of (4-H3NC6H4)3SO3 prompted the investigation of the halogen derivatives; these were tested orally in vivo against Staphylococcus aureus and Streptococcus pyogenes in mice; a decrease in toxicity in the order Cl < Br < iodine, together with corresponding decrease in activity, was observed 2,4-Br(O2N)C6H3NH2 (18.5 g.), through the diazo reaction, gives 12.5 g. 1-chloro-2-bromo-4-nitrobenzene, b0.1 100°, m. 61°. p-O2NC6H4SH (1.55 g.) and 0.4 g. NaOH in 20 cc. EtOH, added to 1.9 g. 3,4-Cl2C6H3NO2 in 10 cc. EtOH and refluxed 2 h., give 1.3 g. 2-chloro-4,4'-dinitrodiphenyl sulfide (I), yellow, m. 144°; the 2-Br analog, yellow, m. 159°, and the 2-I analog, yellow, m. 168°. 3,4-Cl2C6H3NO2 (15 g.) in 60 cc. EtOH, treated (5 min.) with 10 g. Na2S.9H2O in 40 cc. 25% aqueous EtOH and refluxed 6 h., gives 7.2 g. [2,4-Cl(O2N)C6H3]2S, yellow, m. 163°; the portion (3 g.) insoluble in 95% AcOH is the compound C24H12O5N4Cl4S2, probably RN(→O):NR, where R = 3,4-Cl[2,4-Cl(O2N)C6H3S]C6H3S-, red, m. 195°. 2,2'-Diiodo-4,4'-dinitrodiphenyl sulfide (II), pale red, m. 186°. 2,4-Br(O2N)C6H3OH yields an acetate (III), pale yellow, m. 86°; 13 g. III, 7.8 g. p-O2NC6H4SH, 3 g. K2CO3, and 100 cc. Me2CO, refluxed 2 h., yield 6 g. 4,4'-dinitro-2-acetoxydiphenyl sulfide (IV), yellow, m. 100°. Dropwise addition of 7.5 g. KMnO4 in 50 cc. hot H2O to 10 g. I in 150 cc. boiling AcOH gives 8 g. 2-chloro-4,4'-dinitrodiphenyl sulfone (V), m. 182-3°; 2-Br analog, m. 162°, 2-I analog, pale yellow, m. 165°; the sulfone from II, yellow, m. 260°. IV yields 4,4'-dinitro-2-hydroxydiphenyl disulfone, yellow, m. 216°. Reduced Fe (10 g.), added slowly to 5 g. V in 200 cc. boiling AcOH and the mixture heated 10 min. at 90°, gives 3 g. 2-chloro-4,4'-diaminodiphenyl sulfone, pale yellow, m. 114°; 2-Br analog, yellow, m. 157°; 2-I analog, buff, m. 207°. 2,2'-Dichloro-4,4'-diaminodiphenyl sulfone, orange, m. 263°; 2,2'-di-I analog, m. 280°. 4,4'-Diamino-2-hydroxydiphenyl sulfone, m. 134-5° [sulfate, m. 208° (decomposition)] (cf. Burton and Hoggarth, C.A. 39, 4854.7). When you point to this article, it is believed that you are also very interested in this compound(16588-26-4)Computed Properties of C6H3BrClNO2 and due to space limitations, I can only present the most important information.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

More research is needed about 16588-26-4

As far as I know, this compound(16588-26-4)Electric Literature of C6H3BrClNO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Zhou, Qifan; Du, Fangyu; Chen, Yuanguang; Fu, Yang; Sun, Wenjiao; Wu, Ying; Chen, Guoliang researched the compound: 3-Bromo-4-chloronitrobenzene( cas:16588-26-4 ).Electric Literature of C6H3BrClNO2.They published the article 《L-(-)-Quebrachitol as a Ligand for Selective Copper(0)-Catalyzed N-Arylation of Nitrogen-Containing Heterocycles》 about this compound( cas:16588-26-4 ) in Journal of Organic Chemistry. Keywords: nitrogen heterocycle arylation quebrachitol copper catalyst. We’ll tell you more about this compound (cas:16588-26-4).

L-(-)-Quebrachitol (QCT) was found as a ligand of copper powder for selective N-arylation of nitrogen-containing heterocycles with aryl halides. Furthermore, another potential catalytic system (copper powder/QCT/t-BuOK) was successfully adapted to unactivated aryl chlorides.

As far as I know, this compound(16588-26-4)Electric Literature of C6H3BrClNO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Never Underestimate the Influence Of 16588-26-4

As far as I know, this compound(16588-26-4)Application of 16588-26-4 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 3-Bromo-4-chloronitrobenzene( cas:16588-26-4 ) is researched.Application of 16588-26-4.Lucas, Simon C. C.; Atkinson, Stephen J.; Bamborough, Paul; Barnett, Heather; Chung, Chun-wa; Gordon, Laurie; Mitchell, Darren J.; Phillipou, Alexander; Prinjha, Rab K.; Sheppard, Robert J.; Tomkinson, Nicholas C. O.; Watson, Robert J.; Demont, Emmanuel H. published the article 《Optimization of Potent ATAD2 and CECR2 Bromodomain Inhibitors with an Atypical Binding Mode》 about this compound( cas:16588-26-4 ) in Journal of Medicinal Chemistry. Keywords: ATAD2 CECR2 inhibitor cat eye syndrome bromodomains. Let’s learn more about this compound (cas:16588-26-4).

Most bromodomain inhibitors mimic the interactions of the natural acetylated lysine (KAc) histone substrate through key interactions with conserved asparagine and tyrosine residues within the binding pocket. Herein we report the optimization of a series of Ph sulfonamides that exhibit a novel mode of binding to non-bromodomain and extra terminal domain (non-BET) bromodomains through displacement of a normally conserved network of four water mols. Starting from an initial hit mol., we report its divergent optimization toward the ATPase family AAA domain containing 2 (ATAD2) and cat eye syndrome chromosome region, candidate 2 (CECR2) domains. This work concludes with the identification of (R)-55 (GSK232)(I), a highly selective, cellularly penetrant CECR2 inhibitor with excellent physicochem. properties.

As far as I know, this compound(16588-26-4)Application of 16588-26-4 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Something interesting about 16588-26-4

As far as I know, this compound(16588-26-4)Application In Synthesis of 3-Bromo-4-chloronitrobenzene can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 3-Bromo-4-chloronitrobenzene(SMILESS: BrC1=C(C=CC(=C1)[N+](=O)[O-])Cl,cas:16588-26-4) is researched.Computed Properties of C38H24F4O4P2. The article 《Synthesis and ultraviolet spectra of nitrodiphenyl-amine disperse dyes. II. Synthesis of some substituted 2- and 4-nitrodiphenylamines》 in relation to this compound, is published in Journal of the Society of Dyers and Colourists. Let’s take a look at the latest research on this compound (cas:16588-26-4).

The synthesis of some substituted 2- and 4-nitrodiphenylamines, yellow dyes for synthetic fibers, is described. Condensation of 0.02 mole 2,5-Cl2C6H3NO2 with 0.04 mole PhNH2 in 50 ml. boiling EtOH containing 3 g. NaOAc gave 52.8% I (R = NO2, R1 = Cl, R2 = R3 = R4 = H), m. 59-60° (75% aqueous alc.). Other I were prepared similarly (R, R1, R2, R3, R4, % yield, and m.p. given): NO2, Cl, OMe, H, H, 50, 100-1°; NO2, Cl, H, OMe, H, 37, 90°; NO2, Cl, H, H, OMe, 48, 118-19°; NO2, Cl, F, H, H, 21, 113-14°; NO2, Cl, H, F, H, 40, 99-100°; NO2, Cl, H, H, F, 38, 80-1°; NO2, Cl, H, H, SO2Me, 15, 210-11°; CF3, NO2, H, H, H, 71, 63-4°; CF3, NO2, OMe, H, H, 16, 106-7°; CF3, NO2, H, OMe, H, 32, 88°; CF3, NO2, H, H, OMe, 74, 87-8°; CF3, NO2, F, H, H, 30, 60-1°; CF3, NO2, H, F, H, 57, 73-4°; CF3, NO2, H, H, F, 20, 74-5°; MeSO2, NO2, H, H, H, 82, 169-70°; Me, NO2, H, H, H, 23, 133-4°; NO2, Me, H, H, H, 79, 34-5°; NO2, OMe, H, H, H, 23, 44-5°. Fusion of 0.02 mole 3,4-Cl2C6H3NO2 (II) with 0.04 mole PhNH2 gave 31.8% I (R = Cl, R1 = NO2, R2 = R3 = R4 = H), m. 112-13°. Other I (R = Cl, R1 = NO2) were prepared similarly (R2, R3, R4, % yield, and m.p. given): OMe, H, H, 36, 108-9°; H, OMe, H, 25, 122-3°; H, H, OMe, 32, 99-100°; H, H, F, 20, 119-20°. Condensation of 0.02 mole 4,3-Cl(O2N)C6H3SO2NH2 (III) and 0.03 mole PhNH2 by fusing for 6 hrs. at 130° gave 71.8% I (R = NO2, R1 = SO2NH2, R2 = R3 = R4 = H), m. 179-80°. Other I (R = NO2, R1 = SO2NH2) were prepared similarly (R2, R3, R4, % yield, and m.p. given): Me, H, H, 84, 195-6°; H, Me, H, 85, 172-3°; H, H, Me, 90, 196-7°; OMe, H, H, 41, 225-6°; H, OMe, H, 91, 181-2°; H, H, OMe, 89, 226-7°; F, H, H, 61, 206-7°; H, F, H, 77, 195-6°; H, H, F, 80, 234-5°; Cl, H, H, 42, 202-3°; H, Cl, H, 80, 201-2°; H, H, Cl, 80, 241-2°; Br, H, H, 60, 200-1°; H, Br, H, 79, 207-8°; H, H, Br, 84, 235-6°; CF3, H, H, 40, 169-70°; H, CF3, H, 82, 210-11°; H, H, CF3, 29, 260-1°; H, H, SO2Me, 59, 253-4°. Condensation of 4.7 g. 2,5-Cl(O2N)C6H3SO2NH2 (IV) with 0.04 mole PhNH2 in 100 ml. boiling PhNO2 for 24 hrs. gave 68.4% I (R = SO2NH2, R1 = NO2, R2 = R3 = R4 = H), m. 175-6°. Other I (R = SO2NH2, R1 = NO2) were prepared similarly (R2, R3, R4, % yield, and m.p. given): OMe, H, H, 62, 205-8°; H, OMe, H, 59, 172-4°; H, H, OMe, 65, 160°; F, H, H, 60, 182-3°; H, F, H, 68, 173-4°; H, H, F, 71, 162-4°. A mixture of 25 g. 4,3-Cl(O2N)C6H3CO2H and 50 ml. SOCl2 was refluxed for 2 hrs., stripped of excess SOCl2, and treated with excess NH4OH to give 86.4% 4,3-Cl(O2N)C6H3CONH2, m. 154-5° (EtOH), which (0.02 mole) was condensed with 0.04 mole PhNH2 in EtOH containing NaOAc to give 34.4% I (R = NO2, R1 = CONH2, R2 = R3 = R4 = H), m. 194-5°. Other I were prepared similarly (R, R1, R2, R3, R4, % yield, and m.p. given): NO2, CONH2, OMe, H, H, 68, 144-5°; NO2, CONH2, H, OMe, H, 72, 170-1°; NO2, CONH2, H, H, OMe, 68, 220-1°; NO2, CONH2, F, H, H, 60, 169-71°; NO2, CONH2, H, F, H, 67, 191-2°; NO2, CONH2, H, H, F, 78, 207-8°; NO2, CONH2, H, H, SO2Me, 10, 244-5°; CONH2, NO2, H, H, H, 25, 184-5°; CONH2, NO2, OMe, H, H, 59, 215-16°; CONH2, NO2, H, OMe, H, 55, 198-9°; CONH2, NO2, H, H, OMe, 79, 216-17°; CONH2, NO2, F, H, H, 49, 184-5°; CONH2, NO2, H, F, H, 43, 233-4°; CONH2, NO2, H, H, F, 82, 231-2°; CONH2, NO2, H, H, SO2Me, 7, 207-8°. Esterification of 4,3-Cl(O2N)C6H3CO2H gave 4,3-Cl(O2N)C6H3CO2Et, m. 60-1° (EtOH), which was condensed with PhNH2 in boiling EtOH to give 92.8% I (R = NO2, R1 = CO2Et, R2 = R3 = R4 = H), m. 114-15°. Other I were prepared similarly (R, R1, R2, R3, R4, % yield, and m.p. given): NO2, CO2Et, OMe, H, H, 72, 116-18°; NO2, CO2Et, H, OMe, H, 70, 105-6°; NO2, CO2Et, H, H, OMe, 63, 128-9°; NO2, CO2Et, F, H, H, 15, 120-2°; NO2, CO2Et, H, F, H, 69, 79-80°; NO2, CO2Et, H, H, F, 52, 138-9°; NO2, CO2Et, H, H, SO2Me, 13, 149-50°; CO2Et, NO2, H, H, H, 29, 111-12°; CO2Et, NO2, OMe, H, H, 41, 112-13°; CO2Et, NO2, H, OMe, H, 46, 81-2°; CO2Et, NO2, H, H, OMe, 56, 120-2°; CO2Et, NO2, F, H, H, 18, 105°; CO2Et, NO2, H, F, H, 59, 119-20°; CO2Et, NO2, H, H, F, 34, 121-2°; CO2Et, NO2, H, H, SO2Me, 10, 189-90°; NO2, CF3, H, H, H, 63, 84°; NO2, CF3, OMe, H, H, 39, 123-4°; NO2, CF3, H, OMe, H, 81, 67-8°; NO2, CF3, H, H, OMe, 80, 85-6°; NO2, CF3, F, H, H, 76, 77-8°; NO2, CF3, H, F, H, 70, 93°; NO2, CF3, H, H, F, 54, 77-8°; NO2, CF3, H, H, SO2Me, 10, 149-50°. Nitration of p-ClC6H4SO2Me with KNO3 in concentrated H2SO4 at 80-5° for 3 hrs. gave 81.7% 4,3-Cl(O2N)C6H3SO2Me, m. 121-2° (20% aqueous alc.), which was condensed with PhNH2 to give 92% I (R = NO2, R1 = SO2Me, R2 = R3 = R4 = H), m. 130-1°. A solution of 15 g. 0-ClC6H4CN in fuming HNO3 was allowed to warm to room temperature from 0-4° in 1 hr., kept for 1 hr. at room temperature, and mixed with 600 ml. ice-water to give 81.8% 2,5-Cl(O2N)C6H3CN, m. 108° (EtOH), which was condensed with PhNH2 in the presence of NaOAc to give 78% I (R = CN, R1 = NO2, R2 = R3 = R4 = H), m. 159-60°. Similarly prepared was I (R = NO2, R1 = CN, R2 = R3 = R4 = H), m. 121-2°. A suspension of 21.7 g. 4,2-Br(O2N)C6H3NH2 in 85 ml. concentrated HCl at 0-4° was diazotized with NaNO2, stirred 1 hr. at 5°, mixed with 15 g. CuCl2 in 50 ml. concentrated HCl, warmed to 70° in 1 hr., and stirred for 30 min. at 70° and overnight at room temperature to give 50% 5,2-Br(Cl)C6H3NO2, m. 70-1° (20% aqueous alc.), which was condensed with PhNH2 to give 80.5% I (R = NO2, R1 = Br, R2 = R3 = R4 = H), m. 54-6°. Similarly prepared were I (R = Br, R1 = NO2, R2 = R3 = R4 = H), m. 111-12°. I (R = NO2, R1 = F, R2 = R3 = R4 = H), m. 120-1°, and I (R = F, R1 = NO2, R2 = R3 = R4 = H), m. 134°. Nitration of 4-ClC6H4CHO gave 80% 4,3-Cl(O2N)C6H3CHO, m. 65-6° (EtOH), which was condensed with PhNH2 in the presence of NaOAc to give a mixture of I (R = NO2, R1 = CHO, R2 = R3 = R4 = H), m. 147-8°, and 4,3-PhNH(O2N)C6H3CH:NPh, m. 108-9°. Similarly prepared was 2,5-PhNH(O2N)C6H3CHO, m. 182° (by-product and m. 132-3°). Attempted conversion of II with 2-, 3-, or 4-FC6H4NH2 or with 3-MeOC6H4NH2 in refluxing HCONMe2 gave 75-85% 2,4-Cl(O2N)C6H3NMe2, m. 78°. Similarly, III and 2- or 4-F3CC6H4NH2 in HCONMe2 gave 4,3-Me2N(O2N)C6H3SO2NH2, m. 133-4°, while IV with all arylamines in HCONMe2 gave 2,5-Me2N(O2N)C6H3SO2NH2, m. 147-8° (EtOH).

As far as I know, this compound(16588-26-4)Application In Synthesis of 3-Bromo-4-chloronitrobenzene can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Top Picks: new discover of 16588-26-4

As far as I know, this compound(16588-26-4)HPLC of Formula: 16588-26-4 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called o-Halogenated p-nitroaniline and its derivatives, published in 1914, which mentions a compound: 16588-26-4, mainly applied to , HPLC of Formula: 16588-26-4.

When p-NO2C6H4NH2 is dissolved or suspended in HCl and Cl or Br added a mixture, difficult to sep., of mono- and dihalogenated anilines with the halogen in the o-position is formed. If, however, gaseous Cl (mol. ratio 1 : 1) is passed into the b. HCl solution 2,4-Cl(O2N)C6H3NH2 is almost the sole product. This derivative mixed with some di-Cl derivative is obtained on chlorinating at -o°(Casella & Co., Ger. Pat., 109,189). At room temperature, on adding Cl slowly to the HCl solution, the di-Cl deriv, + quinone are formed. Chlorinating by Noelting’s method, using Ca(ClO)2, gave mixtures Similar results were obtained with Br. These derivatives are obtained by warming 1-nitro-3,4-dibromo (or dichloro) benzene with alc. NH3 in the scaled tube at 190°. The NH2 group substitutes p to NO2. By halogenating these monohalogen derivatives it is possible to get derivatives with 2 different halogens in the same ring. The action of ClI on a glac. AcOH solution of p-NO2C6H4NH2 gives mixtures from which the mono- and di-I derivatives can be separated by EtOH. 1-Nitro-3-chloro-4-aniline, bright yellow needles from hot H2O, m. 104.5°; acetyl derivative, straw-yellow flat prisms from EtOH, m. 139°. Diazotizing in H2SO4 or HNO3 suspension with gaseous HNO2 gives the diazo compound which, by way of the perbromide, goes into 1-nitro-3-chloro-4-bromobenzene, prisms from CHCl2, m. 62°. 1-Nitro-3-chloro-4-iodobenzene, almost colorless needles from EtOH, m. 103°, is obtained similarly, by way of the periodide. 1-Nitro-3-bromo-4-aniline, bright yellow needles, m. 104.5°, which with Ac2O gives the monoacetyl derivative, flat prisms, m. 114°, and the diacetyl derivative, short fat prisms, m. 132°. also from the mono derivative, by the action of Ac2O + traces of POCl3. Diazotizing and halogenating as above gives 1-nitro-3-bromo-4-chlorobenzene, white or colorless prisms, volatil with steam, m. 61°, is identical with the compound similarly obtained from 2,5-Cl(O2N)C6H3NH2. 1-Nitro-3-bromo-4-iodobenzene, prisms from AcOEt, m. 106°, was obtained similarly. 1-Nitro-3-iodo-4-aniline presents 2 forms: (1) stable yellow-red prisms, and (2) the labile forms golden yellow plates in C6H6, below 17°, m. 109°; monoacetyl derivative, bright yellow prisms; diacetyl derivative, more soluble than the mono compound, white needles. The diazo compound, on adding Cl, gives 1-nitro-3-iodo-4-chlorobenzene, needles, m. 78°, identical with the compound obtained similarly with I from 2,5-Cl(O2N)C6H2NH2. 1-Nitro-3,5-dichloro-4-aniline, yellow shining needles, m. 195°, slightly soluble in dilute and concentrate inorganic acids, unchanged by fuming HNO3 in the cold. To diazotize suspend in HNO3 (d. 1.38) and add gaseous HNO2 at o°; on diluting the explosive diazonium nitrate seps., fairly soluble in H2O. Ac2O + traces of POCl3 give the monoacetyl derivative, almost colorless needles, m. 215°, and the diacetyl derivative, monoclinic (Artini, Rend. ist. lombardo sci. lett., [2] 45, 1912), prisms, m. 142.5°, d. 1.565, more soluble than the mono compound In absolute EtOH + some concentrate H2SO4 + EtONO it gives 1-nitro-3,5-dichlorobenzene, plates, m. 65.4°, which on reducing with Sn + HCl gives 3,5-dichloroaniline, needles, m. 51.5°. The latter, by replacing NH3 with Cl, gives 1,3,4-trichlorobenzene, white needles, to. 63.5°, which is also obtained from 2,4,6-Cl3C8H2NH2, m. 77.5°, by replacing NH3, with H. 3,5-Cl2C4H3NH2 by replacing NH2 with Br gave 1-bromo-3,5-dichlorobenzene, needles, m. 75.8°. 1-Iodo-3,5-dichlorobenzene, m. 54°, was obtained similarly and is identical with that prepared similarly from 2,4,6-ICl2C6H2NH2, m. 84°. Anilines containing 3 identical halogen ats. in the 2,4,6-positions may be obtained by direct halogenation of PhNH2 of which they are the end products. The mixed halogenated anilines are made from anilines halogenated in p-position by adding two halogens (Br or ClI) in the o-position in glac. AcOH. o,p- or o,o-dihalogenanilines may even be used, but displacing of weak halogens may take place. All of the theoretically possible trihalogenbenzenes can be obtained by thus substituting halogen for NH2 in anilines. 2,6,4-Cl2(O2N)C6H2NH2 gives 1-nitro-3,4,5-trichlorobenzene, bright yellow prisms, m. 72.5°, volatil with steam; reduction and elimination of NH2 gives 1,2,3-C6H2Cl3, identical with that from 2,6-Cl2C6H3NH2 by the same method. 1-Nitro-3,5-dichloro-4-bromobenzene, from the above aniline, yellow. prisms, m. 88°, volatile with steam; similarly 1-nitro-3,5-dichloro-4-iodobenzene, yellow prisms, m. 154.8°, less volatile; reduction, etc., gives 1,3-dichloro-2-iodobenzene, thin plates, m. 68°, volatile with steam, also from 3,6-C;2C4H3NH2 with I. p-NO3 C4H4NH2 + Br gives 1-nitro-3,5-dibromo-4-aniline, yellow plates, m. 202.5°; Ac2O as above gives the monoacetyl derivative, colorless needles or triclinic prisms, isomorphous with the di-Cl compound, and the diacetyl derivative, prisms, m. 136°, triclinic pinacoidal, a : b : c = 1.0901 : 1 : 0.8325, a = 88° 43′ 4”. β = 70° 49′ 34”. γ = 93° 25′ 39”, d. 1.939.3 Diazotizing the above or 2,4.6-Br2(O2N)C5H2NH3 with EtONO, etc., gives 1-nitro-3,5-dibromobenzene, almost colorless needles, m. 104.5°; on reduction with Sn + HCl, etc., it gives sym.-dibromochlorobenzene, m. 119°, with Cl, or dibromoiodobenzene, m. 124.8°, with 1. Both are easily volatil with steam and may be prepared from the corresponding anilines and the latter also from 2,4,6-IBr2C6H2NH2. 1-Nitro-3,4,5-tribromobenzene, from the o,o-dibromoaniline by replacing NH3 with Br, yellowish prisms, m. 111.9° on reduction, etc., gives 1,2,3-C6H3Br3, m. 87.8°. 1-Nitro-3,5-dibromo-4-chlorobenzene from the same aniline, yellowish prisms, m. 92-7°, on reduction, etc., gives 2,6-Br2C6H3Cl, m. 71°, identical with the compound similarly obtained from 2,6-Br2C6H3NH2 by replacing NH2 with Cl. 1-Nitro-3,5-dibromo-4-iodobenzene, from 2,6,4-Br2(O2N)C6H2NH2, prisms, 135.5°, cannot be reduced to the aniline. The 2,6-Br2C6H2I was obtained from 2,6-Br2C6H3NH2, prisms, m. 72°. 1-Nitro-3,5-diiodo-4-aniline, from p-NO2C6H4NH2 + ClI in AcOH, yellow needles; m. 245°; monoacetyl derivative, yellow needles, m. 249°; diacetyl derivative, paler yellow prisms, m. 171°, triclinic pinacoidal, a : b : c = 0.9682 : 1 : O.7260, α = 83° 6’43”, β = 76°8’29”, γ = 99° 42′ 44”, d. 2.290. 1-Nitro-3,5-diiodobenzene, from the preceding, difficultly volatile with steam, yellowish prisms, m. 104.5°, on reducing with FeSO4 + NH3 gives 3,5-I2C6H2NH3, needles, m. 110°. 2,6,4-I2ClC6H2NH2 gave 1,3-diiodo-5-chlorobenzene, needles, m. 101°, discolors brown in the light. Similarly the 5-bromoaniline gave 1,3-diiodo-5-bromobenzene, m. 140°, slightly volatile with steam. 1,3,5-Triiodobenzene, from 2,4,6-I2C6H2NH2 or 3.5-I2C6H3NH2, opaque needle, m. 184.2°. Decompose of 2,6,4-I2(O2N)C6H2N2NO3 with b. aqueous Cu2Cl2 gave 1-nitro-3,5-diiodo-4-chlorobenzene, needles, m. 110°; reduction with FeSO4 + NH3 gives a poor yield, (NH4)2S gives a better yield of the aniline together with some S-containing compound The aniline gives 2,6-I2C6H3Cl, rhombic plates, m. 82°. 2,6,4-I2(O2N)(C6H2NH2 gives 1-nitro-3,5-diiodo-4-bromobenzene, white needles from EtOH, yellow prisms from CHCl3 m. 125.4°, and 1-nitro-3,4,5-triiodobenzene, yellow prisms from EtOH, contain C6H6 of crystallization when crystallized from C6H6; reduction with FeSO4 + NH3 gives 3,4,5-triiodoaniline with difficulty; (NH4)2S gives sym.-I2C6H2NH2. The I2C6H2NH2 gives 1,2,3-C6H2I2 on changing NH2 for H, m. 116°, which is identical with that from 2,3-I2C6H3NH2. 2,4-Cl(O2N)C6H3NH2 + Br gives 1-nitro-3-chloro-5-bromo-4-aniline, bright Yellow needles, m. 177.4°; monoacetyl derivative, straw-yellow needles, m. 224°; diacetyl derivative, prisms or plates, m. 139°, monoclinic, prismatic, a : b : c = 1.1127 : 1 : 0.8509, β = 70-36°, d. 1-749. 1-Nitro-3-chloro-5-bromobenzene, from the above aniline, plates, m. 81.2°. and this on reducing with Sn + HCl, etc., gives 3-chloro-5-bromoaniline, needles, or prisms. The latter, as well as 2,4,6-BrClIC6H2NH2, m. 110.5°, gives 1-chloro-3-bromo-5-iodobenzene, needles, m. 85.8°. 1-Nitro-3,4-dichloro-5-bromobenzene, yellowish prisms, m. 82.5°, 1-Nitro-3,4-dibromo-5-chlorobenzene, yellowish prisms, m. 99.5°, and 1-nitro-3-chloro-4-iodo-5 bromobenzene, needles, 159°, by replacing NH2 with a halogen in the preceding nitroaniline. 1,2-Dibromo-3-chlorobenzene, by reducing 3,4,5-Br2ClC6H2NO2, rhombic plates. m. 72.6°. 2,4-Cl(O2N)C6H2NH22, in HOAc + ClI gives 1-nitro-3-chloro-5-iodo-4-aniline, bright yellow needles, 195°; monoacetyl derivative, white prisms, m. 207°; diacetyl derivative, prisms, m. 113°, monoclinic, a : b : c = 1.038 :-1 : 0.799, β = 71.44°, d. 1.913. This aniline gives 1-nitro-3-chloro-5-iodobenzene, yellow prisms, m. 70.4° by replacing NH2 with Cl. 1-Nitro-3,4-dichloro-5-iodobenzene, from the aniline with Cl, bright yellow prisms, m. 59°, is not easily reduced by FeSO4 + NH3, but Sn + HCl gives 3,5-CHC6H3NH2, plates, m. 69.8°; with Br the aniline gives 1-nitro-3-chloro-4-bromo-5-iodobenzene, almost colorless needles, m. 95°; and with I it gives 1-nitro-3-chloro-4,5-diiodobenzene, almost colorless needles, m. 146.5°. 3,4,5-Cl2IC6H2NO2 + (NH4)2S in EtOH gives 3,4-Cl2C6H3NH2. 2,4-Br(O2N)C6H3NH2 + CH in HOAc gives 1-nitro-3-bromo-5-iodo-4-aniline, needles, m. 221°; monoacetyl derivative, yellowish prisms, m. 226°; diacetyl derivative, prisms, m. 134°, triclinic pinacoidal, a : b : C = 0.9470 : 1 : 0.7288, α = 83° 59′ 54”, β = 77° 30′ 18”, γ = 99° 6′ 14”, d.2.112. 1-Nitro-3-bromo-5-iodobenzene, by replacing NH2 with H in the preceding aniline, needles, m. 97.5°; 1-nitro-3-bromo-4-chloro-5-iodobenzene, by replacing NH2 with Cl, yellowish prisms or colorless needles, m. 84°.

As far as I know, this compound(16588-26-4)HPLC of Formula: 16588-26-4 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Share an extended knowledge of a compound : 16588-26-4

This literature about this compound(16588-26-4)Recommanded Product: 16588-26-4has given us a lot of inspiration, and I hope that the research on this compound(3-Bromo-4-chloronitrobenzene) can be further advanced. Maybe we can get more compounds in a similar way.

Recommanded Product: 16588-26-4. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 3-Bromo-4-chloronitrobenzene, is researched, Molecular C6H3BrClNO2, CAS is 16588-26-4, about Inexpensive NaX (X = I, Br, Cl) as a halogen donor in the practical Ag/Cu-mediated decarboxylative halogenation of aryl carboxylic acids under aerobic conditions. Author is Fu, Zhengjiang; Jiang, Ligao; Zuo, Qianming; Li, Zhaojie; Liu, Yanzhu; Wei, Zhenhong; Cai, Hu.

A series of aryl halides RX [R = 2-O2NC6H4, 2-NO2-4-MeOC6H3, 3-chlorothiophen-2-yl, etc.; X = Cl, Br, I] was synthesized via Ag/Cu-mediated decarboxylative halogenation of aryl carboxylic acids using sodium halides as halogen donor under aerobic conditions was reported. The halodecarboxylation was shown to be an effective strategy for S-containing heteroaromatic carboxylic acid and benzoic acids with nitro, chloro and methoxyl substituents at the ortho position. A gram-scale reaction and a three-step procedure to synthesize iniparib was performed to evaluate the practicality of this protocol. A preliminary mechanistic investigation indicated that Cu plays a vital role and a radical pathway was involved in the transformation.

This literature about this compound(16588-26-4)Recommanded Product: 16588-26-4has given us a lot of inspiration, and I hope that the research on this compound(3-Bromo-4-chloronitrobenzene) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

A small discovery about 16588-26-4

This literature about this compound(16588-26-4)Formula: C6H3BrClNO2has given us a lot of inspiration, and I hope that the research on this compound(3-Bromo-4-chloronitrobenzene) can be further advanced. Maybe we can get more compounds in a similar way.

Formula: C6H3BrClNO2. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 3-Bromo-4-chloronitrobenzene, is researched, Molecular C6H3BrClNO2, CAS is 16588-26-4, about Structural basis for itraconazole-mediated NPC1 inhibition. Author is Long, Tao; Qi, Xiaofeng; Hassan, Abdirahman; Liang, Qiren; De Brabander, Jef K.; Li, Xiaochun.

Niemann-Pick C1, a lysosomal protein of 13 transmembrane helixes and three lumenal domains, exports low-d.-lipoprotein-derived cholesterol from lysosomes. TMs 3-7 of NPC1 comprise the sterol-sensing domain. Previous studies suggest that mutation of the NPC1-SSD or the addition of the anti-fungal drug itraconazole abolishes NPC1 activity in cells. However, the itraconazole binding site and the mechanism of NPC1-mediated cholesterol transport remain unknown. Here, we report a cryo-EM structure of human NPC1 bound to itraconazole, which reveals how this binding site in the center of NPC1 blocks a putative lumenal tunnel linked to the SSD. Functional assays confirm that blocking this tunnel abolishes NPC1-mediated cholesterol egress. Intriguingly, the palmitate anchor of Hedgehog occupies a similar site in the homologous tunnel of Patched, suggesting a conserved mechanism for sterol transport in this family of proteins and establishing a central function of their SSDs.

This literature about this compound(16588-26-4)Formula: C6H3BrClNO2has given us a lot of inspiration, and I hope that the research on this compound(3-Bromo-4-chloronitrobenzene) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Awesome Chemistry Experiments For 16588-26-4

This literature about this compound(16588-26-4)COA of Formula: C6H3BrClNO2has given us a lot of inspiration, and I hope that the research on this compound(3-Bromo-4-chloronitrobenzene) can be further advanced. Maybe we can get more compounds in a similar way.

Robarge, Kirk D.; Brunton, Shirley A.; Castanedo, Georgette M.; Cui, Yong; Dina, Michael S.; Goldsmith, Richard; Gould, Stephen E.; Guichert, Oivin; Gunzner, Janet L.; Halladay, Jason; Jia, Wei; Khojasteh, Cyrus; Koehler, Michael F. T.; Kotkow, Karen; La, Hank; La Londe, Rebecca L.; Lau, Kevin; Lee, Leslie; Marshall, Derek; Marsters, James C.; Murray, Lesley J.; Qian, Changgeng; Rubin, Lee L.; Salphati, Laurent; Stanley, Mark S.; Stibbard, John H. A.; Sutherlin, Daniel P.; Ubhayaker, Savita; Wang, Shumei; Wong, Susan; Xie, Minli published an article about the compound: 3-Bromo-4-chloronitrobenzene( cas:16588-26-4,SMILESS:BrC1=C(C=CC(=C1)[N+](=O)[O-])Cl ).COA of Formula: C6H3BrClNO2. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:16588-26-4) through the article.

SAR for a wide variety of heterocyclic replacements for a benzimidazole led to the discovery of functionalized 2-pyridyl amides as novel inhibitors of the hedgehog pathway. The 2-pyridyl amides were optimized for potency, PK, and drug-like properties by modifications to the amide portion of the mol. resulting in I (GDC-0449). Amide I produced complete tumor regression at doses as low as 12.5 mg/kg BID in a medulloblastoma allograft mouse model that is wholly dependent on the Hh pathway for growth and is currently in human clin. trials, where it is initially being evaluated for the treatment of BCC.

This literature about this compound(16588-26-4)COA of Formula: C6H3BrClNO2has given us a lot of inspiration, and I hope that the research on this compound(3-Bromo-4-chloronitrobenzene) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

What unique challenges do researchers face in 16588-26-4

As far as I know, this compound(16588-26-4)Recommanded Product: 3-Bromo-4-chloronitrobenzene can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Protti, Stefano; Dichiarante, Valentina; Dondi, Daniele; Fagnoni, Maurizio; Albini, Angelo published an article about the compound: 3-Bromo-4-chloronitrobenzene( cas:16588-26-4,SMILESS:BrC1=C(C=CC(=C1)[N+](=O)[O-])Cl ).Recommanded Product: 3-Bromo-4-chloronitrobenzene. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:16588-26-4) through the article.

The photodehalogenation of fluoro- or chlorobenzene derivatives smoothly generates triplet and singlet Ph cations (3,1Ar+) and potentially benzyne. These intermediates lead to different products, which warrants exploring the direct effect of substituents. SiMe3 and SnMe3 groups have been found to be convenient probes since they affect neither the photophysics nor the primary dehalogenation of 4-chloroanisole and 4-chloro- (or 4-fluoro-) N,N-dimethylaniline (except for the case of 4-fluoro-3-(trimethylstannyl)aniline, which was preferentially demetallated). The stabilization by these groups (with SnMe3 ca. 10 kcal mol-1 for the triplets and 20 kcal mol-1 for the singlets, as computed by using (U)B3LYP DFT method with LANL2DZ basis set) made 1Ar+ the lowest state with stannylated and silylated anisoles and solvolysis the main process. On the other hand, donating substituents and an acidic solvent favored the triplet cation chem., a quite general process leading to reduction or (in the presence of π bond nucleophiles) to arylation. Noteworthily, the stannylated 4-N,N-dimethylaminophenyl cation eliminated the Me3Sn+ group, opening an unprecedented path to the corresponding benzyne. Apart from the control of the chem. output, the photostabilizing effect found with a silyl group may be useful for designing less phototoxic fluorinated drugs.

As far as I know, this compound(16588-26-4)Recommanded Product: 3-Bromo-4-chloronitrobenzene can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts