Let`s talk about compounds: 16588-26-4

From this literature《Biarylcarbamoylindolines Are Novel and Selective 5-HT2C Receptor Inverse Agonists: Identification of 5-Methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]- 5-pyridyl]carbamoyl]-6-trifluoromethylindoline (SB-243213) as a Potential Antidepressant/Anxiolytic Agent》,we know some information about this compound(16588-26-4)Formula: C6H3BrClNO2, but this is not all information, there are many literatures related to this compound(16588-26-4).

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 3-Bromo-4-chloronitrobenzene( cas:16588-26-4 ) is researched.Formula: C6H3BrClNO2.Bromidge, Steven M.; Dabbs, Steven; Davies, David T.; Davies, Susannah; Duckworth, D. Malcolm; Forbes, Ian T.; Gaster, Laramie M.; Ham, Peter; Jones, Graham E.; King, Frank D.; Mulholland, Keith R.; Saunders, Damian V.; Wyman, Paul A.; Blaney, Frank E.; Clarke, Stephen E.; Blackburn, Thomas P.; Holland, Vicky; Kennett, Guy A.; Lightowler, Sean; Middlemiss, Derek N.; Trail, Brenda; Riley, Graham J.; Wood, Martyn D. published the article 《Biarylcarbamoylindolines Are Novel and Selective 5-HT2C Receptor Inverse Agonists: Identification of 5-Methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]- 5-pyridyl]carbamoyl]-6-trifluoromethylindoline (SB-243213) as a Potential Antidepressant/Anxiolytic Agent》 about this compound( cas:16588-26-4 ) in Journal of Medicinal Chemistry. Keywords: biarylcarbamoyl indoline preparation structure 5HT2C agonist; antidepressant anxiolytic biarylcarbamoylindoline serotoninergic agonist. Let’s learn more about this compound (cas:16588-26-4).

The evolution, synthesis, and biol. activity of a novel series of 5-HT2C receptor inverse agonists are reported. Biarylcarbamoylindolines have been identified with excellent 5-HT2C affinity and selectivity over 5-HT2A receptors. In addition, (pyridyloxypyridyl)carbamoylindolines have been discovered with addnl. selectivity over the closely related 5-HT2B receptor. Compounds from this series are inverse agonists at the human cloned 5-HT2C receptor, completely abolishing basal activity in a functional assay. The new series have reduced P 450 inhibitory liability compared to a previously described series of 1-(3-pyridylcarbamoyl)indolines (Bromidge et al. J. Med. Chem. 1998, 41, 1598) from which they evolved. Compounds from this series showed excellent oral activity in a rat mCPP hypolocomotion model and in animal models of anxiety. On the basis of their favorable biol. profile, SB-228357 and SB-243213 have been selected for further evaluation to determine their therapeutic potential for the treatment of CNS disorders such as depression and anxiety.

From this literature《Biarylcarbamoylindolines Are Novel and Selective 5-HT2C Receptor Inverse Agonists: Identification of 5-Methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]- 5-pyridyl]carbamoyl]-6-trifluoromethylindoline (SB-243213) as a Potential Antidepressant/Anxiolytic Agent》,we know some information about this compound(16588-26-4)Formula: C6H3BrClNO2, but this is not all information, there are many literatures related to this compound(16588-26-4).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Extracurricular laboratory: Synthetic route of 16588-26-4

From this literature《In Situ Synthesized Silica-Supported Co@N-Doped Carbon as Highly Efficient and Reusable Catalysts for Selective Reduction of Halogenated Nitroaromatics》,we know some information about this compound(16588-26-4)Name: 3-Bromo-4-chloronitrobenzene, but this is not all information, there are many literatures related to this compound(16588-26-4).

Name: 3-Bromo-4-chloronitrobenzene. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 3-Bromo-4-chloronitrobenzene, is researched, Molecular C6H3BrClNO2, CAS is 16588-26-4, about In Situ Synthesized Silica-Supported Co@N-Doped Carbon as Highly Efficient and Reusable Catalysts for Selective Reduction of Halogenated Nitroaromatics. Author is Sheng, Yao; Wang, Xueguang; Yue, Shengnan; Cheng, Gonglin; Zou, Xiujing; Lu, Xionggang.

Silica-supported Co@N-doped carbon (Co@CN/SiO2) catalysts were first prepared by a one-step impregnation with a mixed solution of cobalt nitrate, glucose and urea, followed by in situ carbonization and reduction The Co@CN/SiO2 catalysts were investigated for the selective reduction of nitro aromatics RNO2 (R = Ph, 4,5-dichloro-2-nitroaniline, 2-chloro-3-nitropyridine, etc.) to the corresponding anilines RNH2 using hydrazine hydrate. The Co@CN/SiO2-500 carbonized at 500°C exhibited the highest catalytic activity and excellent stability without any decay of activity after 6 cycles for the reduction of nitrobenzene. Both metallic Co atoms and Co-N species formed in the Co@CN/SiO2 catalysts were active, but the Co-N species were dominant active sites. The high activities of the Co@CN/SiO2 catalysts were attributed to the synergistic effect between the Co and N atoms, promoting heterolytic cleavage of hydrazine to form H+/H- pairs. Representative examples demonstrated that the Co@CN/SiO2-500 could completely transform various halogen-substituted nitro aromatics to the corresponding halogenated anilines with high TOFs and selectivity of >99.5%.

From this literature《In Situ Synthesized Silica-Supported Co@N-Doped Carbon as Highly Efficient and Reusable Catalysts for Selective Reduction of Halogenated Nitroaromatics》,we know some information about this compound(16588-26-4)Name: 3-Bromo-4-chloronitrobenzene, but this is not all information, there are many literatures related to this compound(16588-26-4).

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

What kind of challenge would you like to see in a future of compound: 16588-26-4

When you point to this article, it is believed that you are also very interested in this compound(16588-26-4)Related Products of 16588-26-4 and due to space limitations, I can only present the most important information.

Related Products of 16588-26-4. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 3-Bromo-4-chloronitrobenzene, is researched, Molecular C6H3BrClNO2, CAS is 16588-26-4, about A Predictive Substrate Model for Rat Glutathione S-Transferase 4-4.

Mol. modeling techniques have been used to derive a substrate model for class mu rat glutathione S-transferase 4-4 (GST 4-4). Information on regio- and stereoselective product formation of 20 substrates covering three chem. and structurally different classes was used to construct a substrate model containing three interaction sites responsible for Lewis acid-Lewis base interactions (IS1, IS2, and IS3), as well as a region responsible for aromatic interactions (IS4). Exptl. data suggest that the first protein interaction site (pIS1, interacting with IS1) corresponds with Tyr115, while the other protein interaction sites (pIS2 and pIS3) probably correspond with other Lewis acidic amino acids. All substrates exhibited pos. mol. electrostatic potentials (MEPs) near the site of conjugation with glutathione (GSH), as well as neg. MEP values near the position of groups with Lewis base properties (IS1, IS2, or IS3), which interact with pIS1, pIS2, or pIS3, resp. Obviously, complementarity between the MEPs of substrates and protein in specific regions is important. The substrate specificity and stereoselectivity of GST 4-4 are most likely determined by pIS1 and the distance between the site of GSH attack and Lewis base atoms in the substrates which interact with either pIS2, pIS3, or a combination of these sites. Interaction between aromatic regions in the substrate with aromatic amino acids in the protein further stabilizes the substrate in the active site. The predictive value of the model has been evaluated by rationalizing the conjugation to GSH of 11 substrates of GST 4-4 (representing 3 classes of compounds) which were not used to construct the model. All known metabolites of these substrates are explained with the model. As the computer-aided predictions appear to correlate well with exptl. results, the presented substrate model may be useful to identify new potential GST 4-4 substrates.

When you point to this article, it is believed that you are also very interested in this compound(16588-26-4)Related Products of 16588-26-4 and due to space limitations, I can only present the most important information.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Discovery of 16588-26-4

When you point to this article, it is believed that you are also very interested in this compound(16588-26-4)Category: alcohols-buliding-blocks and due to space limitations, I can only present the most important information.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 3-Bromo-4-chloronitrobenzene, is researched, Molecular C6H3BrClNO2, CAS is 16588-26-4, about 4-Substituted 1-Chloro-2-nitrobenzenes: Structure-Activity Relationships and Extension of the Substrate Model of Rat Glutathione S-Transferase 4-4, the main research direction is chloronitrobenzene glutathione transferase kinetics structure.Category: alcohols-buliding-blocks.

In the present study, eleven 4-substituted 1-chloro-2-nitrobenzenes were tested for their GSH conjugation capacity when catalyzed by base or rat glutathione S-transferase (GST) 4-4. Kinetic parameters (ks and Km, kcat, and kcat/Km) were determined and subsequently used for the description of structure-activity relationships (SAR’s). For this purpose, eight physicochem. parameters (electronic, steric, and lipophilic) of the substituents and five computer-calculated parameters of the substrates (charge distributions and several energy values) were used in regression analyses with the kinetic parameters. The obtained SAR’s are compared with corresponding SAR’s for the GSH conjugation of 2-substituted 1-chloro-4-nitrobenzenes, previously determined [van der Aar et al. (1996) Chem. Res. Toxicol. 9, 527-534]. The kinetic parameters of the 4-substituted 1-chloro-2-nitrobenzenes correlated well with the Hammett σp- constant: the Hammett σp constant corrected for “”through resonance”” while the corresponding kinetic parameters of the 2-substituted 1-chloro-4-nitrobenzenes did not. The base- and GST 4-4-catalyzed GSH conjugation reactions of 2-substituted 1-chloro-4-nitrobenzenes depend to a different extent on the electronic properties of the ortho substituents, suggesting the involvement of different rate-limiting transition states. The base- and GST 4-4-catalyzed conjugation of 4-substituted 1-chloro-2-nitrobenzenes, however, showed a similar dependence on the electronic properties of the para substituents, indicating that these substrates are conjugated to GSH via a similar transition state. Multiple regression analyses revealed that, besides electronic interactions, also steric and lipophilic restrictions appeared to play an important role in the GST 4-4-catalyzed GSH conjugation of 4-substituted 1-chloro-2-nitrobenzenes. Finally, the 4-substituted 1-chloro-2-nitrobenzenes were also used to extend the previously described substrate model for GST 4-4 [De Groot et al. (1995) Chem. Res. Toxicol. 8, 649-658], by which a specific steric restriction of substrates for GST 4-4 became clear.

When you point to this article, it is believed that you are also very interested in this compound(16588-26-4)Category: alcohols-buliding-blocks and due to space limitations, I can only present the most important information.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Let`s talk about compounds: 16588-26-4

When you point to this article, it is believed that you are also very interested in this compound(16588-26-4)Product Details of 16588-26-4 and due to space limitations, I can only present the most important information.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Enzyme kinetics and substrate selectivities of rat glutathione S-transferase isoenzymes towards a series of new 2-substituted 1-chloro-4-nitrobenzenes, published in 1996-02-29, which mentions a compound: 16588-26-4, Name is 3-Bromo-4-chloronitrobenzene, Molecular C6H3BrClNO2, Product Details of 16588-26-4.

1. Four different rat glutathione S-transferase (GST) isoenzymes, belonging to three different classes, were examined for their GSH conjugating capacity towards 11 2-substituted 1-chloro-4-nitrobenzene derivatives Significant differences were found in their enzyme kinetic parameters Km, kcat and kcat/Km. 2. Substrates with bulky substituents on the ortho-position appeared to have high affinities (low Km’s) for the active site of the GST-isoenzymes, suggesting that there is sufficient space in this area of the active site. A remarkably high Km (low affinity) was found for 2-chloro-5-nitropyridine towards all GST-isoenzymes examined 3. GST 3-3 catalyzed the reaction between GSH and the substrates most efficiently (high kcat) compared with the other GST-isoenzymes. Moreover, GST 3-3 showed clear substrate selectivities towards the substrates with a trifluoromethyl- chlorine- and bromine-substituent. 1-Chloro-2,4-dinitrobenzene and 2-chloro-5-nitrobenzonitrile were most efficiently conjugated by all four GST-isoenzymes examined 4. When the rate of the conjugation reactions was followed, a linear increase of formation of GS-conjugate could be seen for 2-chloro-5-nitrobenzonitrile during a much longer period of time than for 1-chloro-2,4-dinitrobenzene with all GST-isoenzymes examined Therefore, it is suggested that 2-chloro-5-nitrobenzonitrile might be recommended as an alternative model substrate in GST-research.

When you point to this article, it is believed that you are also very interested in this compound(16588-26-4)Product Details of 16588-26-4 and due to space limitations, I can only present the most important information.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chemistry Milestones Of 651780-02-8

When you point to this article, it is believed that you are also very interested in this compound(651780-02-8)Application of 651780-02-8 and due to space limitations, I can only present the most important information.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: tert-Butyl 5-bromo-1H-indazole-1-carboxylate( cas:651780-02-8 ) is researched.Application of 651780-02-8.Gulledge, Zachary Z.; Carrick, Jesse D. published the article 《Deprotection of N-tert-Butoxycarbonyl (Boc) Protected Functionalized Heteroarenes via Addition-Elimination with 3-Methoxypropylamine》 about this compound( cas:651780-02-8 ) in European Journal of Organic Chemistry. Keywords: Boc protected heteroarene preparation deprotection methoxypropylamine. Let’s learn more about this compound (cas:651780-02-8).

Continued pursuit of functionalized soft-N-donor complexant scaffolds with favorable solubility and kinetics profiles applicable for the separation of the trivalent minor actinides from the lanthanides has attracted significant interest over the last three decades. Recent work from this laboratory resulted in the production of various N-Boc protected [1,2,4]triazinyl-pyridin-2-yl indole Lewis basic procomplexants which necessitated the removal of the indole N-Boc protecting group prior to evaluation of complexant efficacy in separations assays. Traditional deprotection strategies involving trifluoroacetic and other protic and Lewis acids proved unsuccessful in removal of the recalcitrant indole-N-Boc protecting group necessitating the development of a new strategy for deprotection of this complexant class. A serendipitous result facilitated utilization of 3-methoxypropylamine as a mild deprotecting agent for various N-Boc protected heteroarenes via a proposed addition-elimination mechanism. Method development, application to various heteroarenes including indoles, 1,2-indazoles, 1,2-pyrazoles, and related derivatives, a ten-fold scale-up reaction, and exptl. evaluation of a preliminary mechanistic hypothesis are reported herein.

When you point to this article, it is believed that you are also very interested in this compound(651780-02-8)Application of 651780-02-8 and due to space limitations, I can only present the most important information.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

New explortion of 16588-26-4

As far as I know, this compound(16588-26-4)Recommanded Product: 3-Bromo-4-chloronitrobenzene can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called A Predictive Substrate Model for Rat Glutathione S-Transferase 4-4, published in 1995-08-31, which mentions a compound: 16588-26-4, Name is 3-Bromo-4-chloronitrobenzene, Molecular C6H3BrClNO2, Recommanded Product: 3-Bromo-4-chloronitrobenzene.

Mol. modeling techniques have been used to derive a substrate model for class mu rat glutathione S-transferase 4-4 (GST 4-4). Information on regio- and stereoselective product formation of 20 substrates covering three chem. and structurally different classes was used to construct a substrate model containing three interaction sites responsible for Lewis acid-Lewis base interactions (IS1, IS2, and IS3), as well as a region responsible for aromatic interactions (IS4). Exptl. data suggest that the first protein interaction site (pIS1, interacting with IS1) corresponds with Tyr115, while the other protein interaction sites (pIS2 and pIS3) probably correspond with other Lewis acidic amino acids. All substrates exhibited pos. mol. electrostatic potentials (MEPs) near the site of conjugation with glutathione (GSH), as well as neg. MEP values near the position of groups with Lewis base properties (IS1, IS2, or IS3), which interact with pIS1, pIS2, or pIS3, resp. Obviously, complementarity between the MEPs of substrates and protein in specific regions is important. The substrate specificity and stereoselectivity of GST 4-4 are most likely determined by pIS1 and the distance between the site of GSH attack and Lewis base atoms in the substrates which interact with either pIS2, pIS3, or a combination of these sites. Interaction between aromatic regions in the substrate with aromatic amino acids in the protein further stabilizes the substrate in the active site. The predictive value of the model has been evaluated by rationalizing the conjugation to GSH of 11 substrates of GST 4-4 (representing 3 classes of compounds) which were not used to construct the model. All known metabolites of these substrates are explained with the model. As the computer-aided predictions appear to correlate well with exptl. results, the presented substrate model may be useful to identify new potential GST 4-4 substrates.

As far as I know, this compound(16588-26-4)Recommanded Product: 3-Bromo-4-chloronitrobenzene can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

A small discovery about 16588-26-4

As far as I know, this compound(16588-26-4)Formula: C6H3BrClNO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Bromidge, Steven M.; Dabbs, Steven; Davies, David T.; Davies, Susannah; Duckworth, D. Malcolm; Forbes, Ian T.; Gaster, Laramie M.; Ham, Peter; Jones, Graham E.; King, Frank D.; Mulholland, Keith R.; Saunders, Damian V.; Wyman, Paul A.; Blaney, Frank E.; Clarke, Stephen E.; Blackburn, Thomas P.; Holland, Vicky; Kennett, Guy A.; Lightowler, Sean; Middlemiss, Derek N.; Trail, Brenda; Riley, Graham J.; Wood, Martyn D. researched the compound: 3-Bromo-4-chloronitrobenzene( cas:16588-26-4 ).Formula: C6H3BrClNO2.They published the article 《Biarylcarbamoylindolines Are Novel and Selective 5-HT2C Receptor Inverse Agonists: Identification of 5-Methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]- 5-pyridyl]carbamoyl]-6-trifluoromethylindoline (SB-243213) as a Potential Antidepressant/Anxiolytic Agent》 about this compound( cas:16588-26-4 ) in Journal of Medicinal Chemistry. Keywords: biarylcarbamoyl indoline preparation structure 5HT2C agonist; antidepressant anxiolytic biarylcarbamoylindoline serotoninergic agonist. We’ll tell you more about this compound (cas:16588-26-4).

The evolution, synthesis, and biol. activity of a novel series of 5-HT2C receptor inverse agonists are reported. Biarylcarbamoylindolines have been identified with excellent 5-HT2C affinity and selectivity over 5-HT2A receptors. In addition, (pyridyloxypyridyl)carbamoylindolines have been discovered with addnl. selectivity over the closely related 5-HT2B receptor. Compounds from this series are inverse agonists at the human cloned 5-HT2C receptor, completely abolishing basal activity in a functional assay. The new series have reduced P 450 inhibitory liability compared to a previously described series of 1-(3-pyridylcarbamoyl)indolines (Bromidge et al. J. Med. Chem. 1998, 41, 1598) from which they evolved. Compounds from this series showed excellent oral activity in a rat mCPP hypolocomotion model and in animal models of anxiety. On the basis of their favorable biol. profile, SB-228357 and SB-243213 have been selected for further evaluation to determine their therapeutic potential for the treatment of CNS disorders such as depression and anxiety.

As far as I know, this compound(16588-26-4)Formula: C6H3BrClNO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Extracurricular laboratory: Synthetic route of 651780-02-8

As far as I know, this compound(651780-02-8)Quality Control of tert-Butyl 5-bromo-1H-indazole-1-carboxylate can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Quality Control of tert-Butyl 5-bromo-1H-indazole-1-carboxylate. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: tert-Butyl 5-bromo-1H-indazole-1-carboxylate, is researched, Molecular C12H13BrN2O2, CAS is 651780-02-8, about The application of nitrogen heterocycles in mitochondrial-targeting fluorescent markers with neutral skeletons. Author is Wang, Yue; Xu, Bing; Sun, Ru; Xu, Yu-Jie; Ge, Jian-Feng.

Four different neutral fluorescent markers containing nitrogen heterocycles (quinoxaline, 1H-pyrazolo[3,4-b]pyridine, 1H-indazole and 1H-pyrrolo[2,3-b]pyridine) as targeting groups were designed and prepared in order to screen out structural units for targeting mitochondria. Several classical fluorophores (coumarin, 1,8-naphthalimide and Nile Red) were connected with these heterocycles via Suzuki coupling reactions. The derivatives of coumarin (dyes 1a and 2a-c) and 1,8-naphthalimide (dyes 3a-c) fluoresced in the blue-green region, while the Nile Red derivatives (dyes 1b and 4a-c) fluoresced in the red light region. The optical properties of the classical fluorophores, such as emission properties and photostability, were retained in the new dyes. All of them showed low cytotoxicity. Confocal fluorescence experiments in L929 normal cells and HeLa cancer cells indicated that dyes 1a-b targeted dual sites of mitochondria and lipid droplets. Moreover, dyes 2a-c, 3a-c and 4a-c targeted mitochondria; meanwhile, there are only a few mitochondria-targeting markers with neutral skeletons. Furthermore, it was found that nitrogen heterocycles with N-H bonds can improve the mitochondrial targeting ability of partial neutral fluorophores.

As far as I know, this compound(651780-02-8)Quality Control of tert-Butyl 5-bromo-1H-indazole-1-carboxylate can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Some scientific research tips on 16588-26-4

As far as I know, this compound(16588-26-4)COA of Formula: C6H3BrClNO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Day, Michael; Peters, Arnold Thornton researched the compound: 3-Bromo-4-chloronitrobenzene( cas:16588-26-4 ).COA of Formula: C6H3BrClNO2.They published the article 《Synthesis and ultraviolet spectra of nitrodiphenyl-amine disperse dyes. II. Synthesis of some substituted 2- and 4-nitrodiphenylamines》 about this compound( cas:16588-26-4 ) in Journal of the Society of Dyers and Colourists. Keywords: DIPHENYLAMINES DISPERSE DYE; DYE DIPHENYLAMINES DISPERSE; DISPERSE DYE DIPHENYLAMINES. We’ll tell you more about this compound (cas:16588-26-4).

The synthesis of some substituted 2- and 4-nitrodiphenylamines, yellow dyes for synthetic fibers, is described. Condensation of 0.02 mole 2,5-Cl2C6H3NO2 with 0.04 mole PhNH2 in 50 ml. boiling EtOH containing 3 g. NaOAc gave 52.8% I (R = NO2, R1 = Cl, R2 = R3 = R4 = H), m. 59-60° (75% aqueous alc.). Other I were prepared similarly (R, R1, R2, R3, R4, % yield, and m.p. given): NO2, Cl, OMe, H, H, 50, 100-1°; NO2, Cl, H, OMe, H, 37, 90°; NO2, Cl, H, H, OMe, 48, 118-19°; NO2, Cl, F, H, H, 21, 113-14°; NO2, Cl, H, F, H, 40, 99-100°; NO2, Cl, H, H, F, 38, 80-1°; NO2, Cl, H, H, SO2Me, 15, 210-11°; CF3, NO2, H, H, H, 71, 63-4°; CF3, NO2, OMe, H, H, 16, 106-7°; CF3, NO2, H, OMe, H, 32, 88°; CF3, NO2, H, H, OMe, 74, 87-8°; CF3, NO2, F, H, H, 30, 60-1°; CF3, NO2, H, F, H, 57, 73-4°; CF3, NO2, H, H, F, 20, 74-5°; MeSO2, NO2, H, H, H, 82, 169-70°; Me, NO2, H, H, H, 23, 133-4°; NO2, Me, H, H, H, 79, 34-5°; NO2, OMe, H, H, H, 23, 44-5°. Fusion of 0.02 mole 3,4-Cl2C6H3NO2 (II) with 0.04 mole PhNH2 gave 31.8% I (R = Cl, R1 = NO2, R2 = R3 = R4 = H), m. 112-13°. Other I (R = Cl, R1 = NO2) were prepared similarly (R2, R3, R4, % yield, and m.p. given): OMe, H, H, 36, 108-9°; H, OMe, H, 25, 122-3°; H, H, OMe, 32, 99-100°; H, H, F, 20, 119-20°. Condensation of 0.02 mole 4,3-Cl(O2N)C6H3SO2NH2 (III) and 0.03 mole PhNH2 by fusing for 6 hrs. at 130° gave 71.8% I (R = NO2, R1 = SO2NH2, R2 = R3 = R4 = H), m. 179-80°. Other I (R = NO2, R1 = SO2NH2) were prepared similarly (R2, R3, R4, % yield, and m.p. given): Me, H, H, 84, 195-6°; H, Me, H, 85, 172-3°; H, H, Me, 90, 196-7°; OMe, H, H, 41, 225-6°; H, OMe, H, 91, 181-2°; H, H, OMe, 89, 226-7°; F, H, H, 61, 206-7°; H, F, H, 77, 195-6°; H, H, F, 80, 234-5°; Cl, H, H, 42, 202-3°; H, Cl, H, 80, 201-2°; H, H, Cl, 80, 241-2°; Br, H, H, 60, 200-1°; H, Br, H, 79, 207-8°; H, H, Br, 84, 235-6°; CF3, H, H, 40, 169-70°; H, CF3, H, 82, 210-11°; H, H, CF3, 29, 260-1°; H, H, SO2Me, 59, 253-4°. Condensation of 4.7 g. 2,5-Cl(O2N)C6H3SO2NH2 (IV) with 0.04 mole PhNH2 in 100 ml. boiling PhNO2 for 24 hrs. gave 68.4% I (R = SO2NH2, R1 = NO2, R2 = R3 = R4 = H), m. 175-6°. Other I (R = SO2NH2, R1 = NO2) were prepared similarly (R2, R3, R4, % yield, and m.p. given): OMe, H, H, 62, 205-8°; H, OMe, H, 59, 172-4°; H, H, OMe, 65, 160°; F, H, H, 60, 182-3°; H, F, H, 68, 173-4°; H, H, F, 71, 162-4°. A mixture of 25 g. 4,3-Cl(O2N)C6H3CO2H and 50 ml. SOCl2 was refluxed for 2 hrs., stripped of excess SOCl2, and treated with excess NH4OH to give 86.4% 4,3-Cl(O2N)C6H3CONH2, m. 154-5° (EtOH), which (0.02 mole) was condensed with 0.04 mole PhNH2 in EtOH containing NaOAc to give 34.4% I (R = NO2, R1 = CONH2, R2 = R3 = R4 = H), m. 194-5°. Other I were prepared similarly (R, R1, R2, R3, R4, % yield, and m.p. given): NO2, CONH2, OMe, H, H, 68, 144-5°; NO2, CONH2, H, OMe, H, 72, 170-1°; NO2, CONH2, H, H, OMe, 68, 220-1°; NO2, CONH2, F, H, H, 60, 169-71°; NO2, CONH2, H, F, H, 67, 191-2°; NO2, CONH2, H, H, F, 78, 207-8°; NO2, CONH2, H, H, SO2Me, 10, 244-5°; CONH2, NO2, H, H, H, 25, 184-5°; CONH2, NO2, OMe, H, H, 59, 215-16°; CONH2, NO2, H, OMe, H, 55, 198-9°; CONH2, NO2, H, H, OMe, 79, 216-17°; CONH2, NO2, F, H, H, 49, 184-5°; CONH2, NO2, H, F, H, 43, 233-4°; CONH2, NO2, H, H, F, 82, 231-2°; CONH2, NO2, H, H, SO2Me, 7, 207-8°. Esterification of 4,3-Cl(O2N)C6H3CO2H gave 4,3-Cl(O2N)C6H3CO2Et, m. 60-1° (EtOH), which was condensed with PhNH2 in boiling EtOH to give 92.8% I (R = NO2, R1 = CO2Et, R2 = R3 = R4 = H), m. 114-15°. Other I were prepared similarly (R, R1, R2, R3, R4, % yield, and m.p. given): NO2, CO2Et, OMe, H, H, 72, 116-18°; NO2, CO2Et, H, OMe, H, 70, 105-6°; NO2, CO2Et, H, H, OMe, 63, 128-9°; NO2, CO2Et, F, H, H, 15, 120-2°; NO2, CO2Et, H, F, H, 69, 79-80°; NO2, CO2Et, H, H, F, 52, 138-9°; NO2, CO2Et, H, H, SO2Me, 13, 149-50°; CO2Et, NO2, H, H, H, 29, 111-12°; CO2Et, NO2, OMe, H, H, 41, 112-13°; CO2Et, NO2, H, OMe, H, 46, 81-2°; CO2Et, NO2, H, H, OMe, 56, 120-2°; CO2Et, NO2, F, H, H, 18, 105°; CO2Et, NO2, H, F, H, 59, 119-20°; CO2Et, NO2, H, H, F, 34, 121-2°; CO2Et, NO2, H, H, SO2Me, 10, 189-90°; NO2, CF3, H, H, H, 63, 84°; NO2, CF3, OMe, H, H, 39, 123-4°; NO2, CF3, H, OMe, H, 81, 67-8°; NO2, CF3, H, H, OMe, 80, 85-6°; NO2, CF3, F, H, H, 76, 77-8°; NO2, CF3, H, F, H, 70, 93°; NO2, CF3, H, H, F, 54, 77-8°; NO2, CF3, H, H, SO2Me, 10, 149-50°. Nitration of p-ClC6H4SO2Me with KNO3 in concentrated H2SO4 at 80-5° for 3 hrs. gave 81.7% 4,3-Cl(O2N)C6H3SO2Me, m. 121-2° (20% aqueous alc.), which was condensed with PhNH2 to give 92% I (R = NO2, R1 = SO2Me, R2 = R3 = R4 = H), m. 130-1°. A solution of 15 g. 0-ClC6H4CN in fuming HNO3 was allowed to warm to room temperature from 0-4° in 1 hr., kept for 1 hr. at room temperature, and mixed with 600 ml. ice-water to give 81.8% 2,5-Cl(O2N)C6H3CN, m. 108° (EtOH), which was condensed with PhNH2 in the presence of NaOAc to give 78% I (R = CN, R1 = NO2, R2 = R3 = R4 = H), m. 159-60°. Similarly prepared was I (R = NO2, R1 = CN, R2 = R3 = R4 = H), m. 121-2°. A suspension of 21.7 g. 4,2-Br(O2N)C6H3NH2 in 85 ml. concentrated HCl at 0-4° was diazotized with NaNO2, stirred 1 hr. at 5°, mixed with 15 g. CuCl2 in 50 ml. concentrated HCl, warmed to 70° in 1 hr., and stirred for 30 min. at 70° and overnight at room temperature to give 50% 5,2-Br(Cl)C6H3NO2, m. 70-1° (20% aqueous alc.), which was condensed with PhNH2 to give 80.5% I (R = NO2, R1 = Br, R2 = R3 = R4 = H), m. 54-6°. Similarly prepared were I (R = Br, R1 = NO2, R2 = R3 = R4 = H), m. 111-12°. I (R = NO2, R1 = F, R2 = R3 = R4 = H), m. 120-1°, and I (R = F, R1 = NO2, R2 = R3 = R4 = H), m. 134°. Nitration of 4-ClC6H4CHO gave 80% 4,3-Cl(O2N)C6H3CHO, m. 65-6° (EtOH), which was condensed with PhNH2 in the presence of NaOAc to give a mixture of I (R = NO2, R1 = CHO, R2 = R3 = R4 = H), m. 147-8°, and 4,3-PhNH(O2N)C6H3CH:NPh, m. 108-9°. Similarly prepared was 2,5-PhNH(O2N)C6H3CHO, m. 182° (by-product and m. 132-3°). Attempted conversion of II with 2-, 3-, or 4-FC6H4NH2 or with 3-MeOC6H4NH2 in refluxing HCONMe2 gave 75-85% 2,4-Cl(O2N)C6H3NMe2, m. 78°. Similarly, III and 2- or 4-F3CC6H4NH2 in HCONMe2 gave 4,3-Me2N(O2N)C6H3SO2NH2, m. 133-4°, while IV with all arylamines in HCONMe2 gave 2,5-Me2N(O2N)C6H3SO2NH2, m. 147-8° (EtOH).

As far as I know, this compound(16588-26-4)COA of Formula: C6H3BrClNO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts