In general, the hydroxyl group makes alcohols polar. 527-07-1, formula is C6H11NaO7, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Application In Synthesis of 527-07-1
Dardenne, Kathy;Duckworth, Sarah;Gaona, Xavier;Polly, Robert;Schimmelpfennig, Bernd;Pruessmann, Tim;Rothe, Joerg;Altmaier, Marcus;Geckeis, Horst research published 《 A Combined Study of Tc Redox Speciation in Complex Aqueous Systems: Wet-Chemistry, Tc K-/L3-Edge X-ray Absorption Fine Structure, and Ab Initio Calculations》, the research content is summarized as follows. The combination of wet-chem. experiments (measurements of pH, Eh, and [Tc]) and advanced spectroscopic techniques (K- and L3-edge X-ray absorption fine structure spectroscopy) confirms the formation of a very stable Tc(V)-gluconate complex under anoxic conditions. In the presence of gluconate and an excess of Sn(II) (at pe + pH ≈ 2), technetium forms a very stable Tc(IV)-gluconate complex significantly enhancing the solubility defined by TcO2(s) in hyperalkaline gluconate-free systems. A new setup for “tender” X-ray spectroscopy (spectral range, ~2-5 keV) in transmission or total fluorescence yield detection mode based on a He flow cell has been developed at the INE Beamline for radionuclide science (KIT light source). This setup allows handling of radioactive specimens with total activities up to one million times the exemption limit. For the first time, Tc L3-edge measurements (~2.677 keV) of Tc species in liquid (aqueous) media are reported, clearly outperforming conventional K-edge spectroscopy as a tool to differentiate Tc oxidation states and coordination environments. The coupling of L3-edge X-ray absorption near-edge spectroscopy measurements and relativistic multireference ab initio methods opens new perspectives in the definition of chem. and thermodn. models for systems of relevance in the context of nuclear waste disposal, environmental, and pharmaceutical applications.
Application In Synthesis of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts