Babin, Victor team published research on ACS Catalysis in 2021 | 72824-04-5

Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Babin, Victor;Talbot, Alex;Labiche, Alexandre;Destro, Gianluca;Del Vecchio, Antonio;Elmore, Charles S.;Taran, Frederic;Sallustrau, Antoine;Audisio, Davide research published 《 Photochemical Strategy for Carbon Isotope Exchange with CO2》, the research content is summarized as follows. A photocatalytic approach for carbon isotope exchange is reported. Utilizing [13C]CO2 and [14C]CO2 as primary C1 sources, this protocol allows the insertion of the desired carbon isotope into Ph acetic acids without the need for structural modifications or prefunctionalization in one single step. The exceptionally mild conditions required for this traceless transformation are in stark contrast with those for previous methods requiring the use of harsh thermal conditions.

Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Bai, Chengfeng team published research on Bioorganic & Medicinal Chemistry in 2021 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Category: alcohols-buliding-blocks

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Category: alcohols-buliding-blocks

Bai, Chengfeng;Wu, Shuangjie;Ren, Shengnan;Zhu, Meiqi;Luo, Guoshun;Xiang, Hua research published 《 Benzothiophene derivatives as selective estrogen receptor covalent antagonists: Design, synthesis and anti-ERα activities》, the research content is summarized as follows. Estrogen receptor α emerged as a well validated therapeutic target of breast cancer for decades. However, approx. 50% of patients who initially respond to the standard-of-care (SoC), such as undergo therapy of Tamoxifen, generally inevitably progress to an endocrine-resistance ER+ phenotype. Recently, selective estrogen receptor covalent antagonists (SERCAs) targeted to ERα have demonstrated potential as therapeutic alternatives. In the present study, a series of novel 6-OH-benzothiophene (BT) derivatives targeting ERα and derived from Raloxifene were designed, synthesized, and biol. evaluated as covalent antagonists. Driven by the antiproliferative efficacy in ER+ breast cancer cells, chem. optimization finally led to compound I having potent antagonistic activity in ER+ tumor cells while not showing agonistic activity in endometrial cells. Moreover, a docking simulation was carried out to elucidate the binding mode, revealing I as an antagonist and covalently binding to the cysteine residue at the 530 position of ER helix H11.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Barlaam, Bernard team published research on ACS Medicinal Chemistry Letters in 2013 | 141699-55-0

Related Products of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 141699-55-0, formula is C8H15NO3, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Related Products of 141699-55-0

Barlaam, Bernard;Anderton, Judith;Ballard, Peter;Bradbury, Robert H.;Hennequin, Laurent F. A.;Hickinson, D. Mark;Kettle, Jason G.;Kirk, George;Klinowska, Teresa;Lambert-van der Brempt, Christine;Trigwell, Cath;Vincent, John;Ogilvie, Donald research published 《 Discovery of AZD8931, an Equipotent, Reversible Inhibitor of Signaling by EGFR, HER2, and HER3 Receptors》, the research content is summarized as follows. Deregulation of HER family signaling promotes proliferation and tumor cell survival and has been described in many human cancers. Simultaneous, equipotent inhibition of EGFR-, HER2-, and HER3-mediated signaling may be of clin. utility in cancer settings where the selective EGFR or HER2 therapeutic agents are ineffective or only modestly active. We describe the discovery of AZD8931, I, an equipotent, reversible inhibitor of EGFR-, HER2-, and HER3-mediated signaling and the structure-activity relationships within this series. Docking studies based on a model of the HER2 kinase domain helped rationalize the increased HER2 activity seen with the Me acetamide side chain present in AZD8931. AZD8931 exhibited good pharmacokinetics in preclin. species and showed superior activity in the LoVo tumor growth efficacy model compared to close analogs. AZD8931 is currently being evaluated in human clin. trials for the treatment of cancer.

Related Products of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Israiel, Mariam team published research on Tetrahedron Letters in 2007 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Formula: C8H15NO3

Formula: C8H15NO3, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 141699-55-0, name is tert-Butyl 3-hydroxyazetidine-1-carboxylate, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Chao, Jianhua;Israiel, Mariam;Zheng, Junying;Aki, Cynthia research published 《 A two-step procedure for the preparation of mono-protected bis-N-heterocyclic alkyl ether systems》, the research content is summarized as follows. A two-step convenient sequence for the synthesis of previously inaccessible mono-Boc-protected bis-N-heterocyclic alkyl substituted ether derivatives, e.g., I, is described. Pyridinyl N-heterocyclic ether derivatives, e.g., II, was prepared by Mitsunobu reaction of hydroxypyridines with N-heterocyclic alcs. The reduction of the pyridinyl N-heterocyclic ether derivatives has been achieved catalytically using the combination of PtO2-H2SO4 or PtO2-pTsOH under a hydrogen atm. maintained by a gas balloon at ambient temperature

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Formula: C8H15NO3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Lijun team published research on Journal of Medicinal Chemistry in 2018 | 141699-55-0

Related Products of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Related Products of 141699-55-0

Wang, Yuming;Li, Lijun;Fan, Jun;Dai, Yang;Jiang, Alan;Geng, Meiyu;Ai, Jing;Duan, Wenhu research published 《 Correction to Discovery of Potent Irreversible Pan-Fibroblast Growth Factor Receptor (FGFR) Inhibitors [Erratum to document cited in CA169:405075]》, the research content is summarized as follows. Additions have been made to the list of references for this article.

Related Products of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chao, Jianhua team published research on Tetrahedron Letters in 2007 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Name: tert-Butyl 3-hydroxyazetidine-1-carboxylate

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Name: tert-Butyl 3-hydroxyazetidine-1-carboxylate

Chao, Jianhua;Israiel, Mariam;Zheng, Junying;Aki, Cynthia research published 《 A two-step procedure for the preparation of mono-protected bis-N-heterocyclic alkyl ether systems. [Erratum to document cited in CA146:274191]》, the research content is summarized as follows. On page 791, Figure 1, structure 2 should read: “3”, and structure 3 should read: “2”.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Name: tert-Butyl 3-hydroxyazetidine-1-carboxylate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Yuming team published research on Journal of Medicinal Chemistry in 2018 | 141699-55-0

Application In Synthesis of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Application In Synthesis of 141699-55-0

Wang, Yuming;Li, Lijun;Fan, Jun;Dai, Yang;Jiang, Alan;Geng, Meiyu;Ai, Jing;Duan, Wenhu research published 《 Discovery of Potent Irreversible Pan-Fibroblast Growth Factor Receptor (FGFR) Inhibitors》, the research content is summarized as follows. Fibroblast growth factor receptors (FGFR1-4) are promising therapeutic targets in many cancers. With the resurgence of interest in irreversible inhibitors, efforts have been directed to the discovery of irreversible FGFR inhibitors. Currently, several selective irreversible inhibitors are being evaluated in clin. trials that could covalently target a conserved cysteine in the P-loop of FGFR. In this article, the authors used a structure-guided approach that is rationalized by a computer-aided simulation to discover the novel and irreversible pan-FGFR inhibitor, 9g ((S)-1-(3-(4-amino-5-(7-methoxy-5-methylbenzo[b]thien-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)pyrrolidin-1-yl)prop-2-en-1-one), which provided superior FGFR in vitro activities and decent selectivity over VEGFR2 (vascular endothelia growth factor receptor 2). In in vivo studies, 9g displayed clear antitumor activities in NCI-H1581 and SNU-16 xenograft mice models. Addnl., the diluting method confirmed the irreversible binding of 9g to FGFR.

Application In Synthesis of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Research speed reading in 2022-Compound 72824-04-5

Synthetic Route of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 72824-04-5, formula is C9H17BO2, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Synthetic Route of 72824-04-5

Convergent Route to β-Amino Acids and to β-Heteroarylethylamines: An Unexpected Vinylation Reaction
Various protected β2-amino acids can be prepared by radical addition of β-phthalimido-α-xanthyl propionic acid, both as the free acid or as the Et ester. Successive radical additions provide access to more complex structures. In the case of the free acid, addition to certain heteroaromatics leads directly to β-heteroarylethylamines through spontaneous decarboxylation of the intermediate adduct. Forcing the decarboxylation in some cases generated a vinyl group by decarboxylative elimination of the phthalimido group.

Synthetic Route of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The new and interesting world of chemistry: the extended application of 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Reference of 141699-55-0

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Reference of 141699-55-0

Practical Syntheses of N-Substituted 3-Hydroxyazetidines and 4-Hydroxypiperidines by Hydroxylation with Sphingomonas sp. HXN-200
Hydroxylation of N-substituted azetidines and piperidines with Sphingomonas sp. HXN-200 gave 91-98% of the corresponding 3-hydroxyazetidines and 4-hydroxypiperidines, resp., with high activity and excellent regioselectivity. High yields and high product concentrations (2 g/L) were achieved with frozen/thawed cells as biocatalyst. For the first time, rehydrated lyophilized cells were successfully used for the biohydroxylation.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Reference of 141699-55-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts