Chen, Ye-Wei team published research on Nature Communications in 2021 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Computed Properties of 72824-04-5

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Computed Properties of 72824-04-5

Chen, Ye-Wei;Liu, Yang;Lu, Han-Yu;Lin, Guo-Qiang;He, Zhi-Tao research published 《 Palladium-catalyzed regio- and enantioselective migratory allylic C(sp3)-H functionalization》, the research content is summarized as follows. Here a catalytic protocol for the long-standing challenging enantioselective allylic C(sp3)-H functionalization was reported. Through palladium hydride-catalyzed chain-walking and allylic substitution, allylic C-H functionalization of a wide range of acyclic nonconjugated dienes was achieved in high yields (up to 93% yield), high enantioselectivities (up to 98:2 er), and with 100% atom efficiency. Exploring the reactivity of substrates with varying pKa values uncovers a reasonable scope of nucleophiles and potential factors controlling the reaction. A set of efficient downstream transformations to enantiopure skeletons showcase the practical value of the methodol. Mechanistic experiments corroborate the PdH-catalyzed asym. migratory allylic substitution process.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Computed Properties of 72824-04-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chevis, Philip J. team published research on Chemical Communications (Cambridge, United Kingdom) in 2022 | 72824-04-5

Category: alcohols-buliding-blocks, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Category: alcohols-buliding-blocks

Chevis, Philip J.;Promchai, Thanika;Richardson, Christopher;Limtharakul, Thunwadee;Pyne, Stephen G. research published 《 Synthesis of syn- and enantioenriched anti-β-amino alcohols by highly diastereoselective borono-Mannich allylation reactions》, the research content is summarized as follows. A highly diastereoselective method for the synthesis of syn-β-amino alcs. and enantioenriched anti-β-amino alcs. was developed involving α-hydroxyl aldehydes and chiral α-phenylaminoxyaldehydes or α-benzoyloxyaldehydes, resp. in Petasis borono-Mannich allylation reactions. This study broadened the scope and utility of the Petasis reaction to include pinacol allylboronate and highlights its unique reactivity and stereochem. outcomes.

Category: alcohols-buliding-blocks, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cioffi, Christopher L. team published research on Journal of Medicinal Chemistry in 2014 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Application of C8H15NO3

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Application of C8H15NO3

Cioffi, Christopher L.;Dobri, Nicoleta;Freeman, Emily E.;Conlon, Michael P.;Chen, Ping;Stafford, Douglas G.;Schwarz, Daniel M. C.;Golden, Kathy C.;Zhu, Lei;Kitchen, Douglas B.;Barnes, Keith D.;Racz, Boglarka;Qin, Qiong;Michelotti, Enrique;Cywin, Charles L.;Martin, William H.;Pearson, Paul G.;Johnson, Graham;Petrukhin, Konstantin research published 《 Design, Synthesis, and Evaluation of Nonretinoid Retinol Binding Protein 4 Antagonists for the Potential Treatment of Atrophic Age-Related Macular Degeneration and Stargardt Disease》, the research content is summarized as follows. Accumulation of lipofuscin in the retina is associated with pathogenesis of atrophic age-related macular degeneration and Stargardt disease. Lipofuscin bisretinoids (exemplified by N-retinylidene-N-retinylethanolamine) seem to mediate lipofuscin toxicity. Synthesis of lipofuscin bisretinoids depends on the influx of retinol from serum to the retina. Compounds antagonizing the retinol-dependent interaction of retinol-binding protein 4 (RBP4) with transthyretin in the serum would reduce serum RBP4 and retinol and inhibit bisretinoid formation. The authors recently showed that I, a potent carboxylic acid based RBP4 antagonist, can significantly reduce lipofuscin bisretinoid formation in the retinas of Abca4-/- mice. As part of the NIH Blueprint Neurotherapeutics Network project the authors undertook the in vitro exploration to identify novel conformationally flexible and constrained RBP4 antagonists with improved potency and metabolic stability. The authors also demonstrate that upon acute and chronic dosing in rats, II, a potent cyclopentyl fused pyrrolidine antagonist, reduced circulating plasma RBP4 protein levels by approx. 60%.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Application of C8H15NO3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Claffey, Michelle M. team published research on Journal of Medicinal Chemistry in 2012 | 141699-55-0

Formula: C8H15NO3, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 141699-55-0, formula is C8H15NO3, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Formula: C8H15NO3

Claffey, Michelle M.;Helal, Christopher J.;Verhoest, Patrick R.;Kang, Zhijun;Bundesmann, Mark W.;Hou, Xinjun;Lui, Shenping;Kleiman, Robin J.;Vanase-Frawley, Michelle;Schmidt, Anne W.;Menniti, Frank;Schmidt, Christopher J.;Hoffman, William E.;Hajos, Mihaly;McDowell, Laura;O’Connor, Rebecca E.;MacDougall-Murphy, Mary;Fonseca, Kari R.;Becker, Stacey L.;Nelson, Frederick R.;Liras, Spiros research published 《 Application of Structure-Based Drug Design and Parallel Chemistry to Identify Selective, Brain Penetrant, In Vivo Active Phosphodiesterase 9A Inhibitors》, the research content is summarized as follows. Phosphodiesterase 9A inhibitors have shown activity in preclin. models of cognition with potential application as novel therapies for treating Alzheimer’s disease. Our clin. candidate, PF-04447943 (2), demonstrated acceptable CNS permeability in rats with modest asymmetry between central and peripheral compartments (free brain/free plasma = 0.32; CSF/free plasma = 0.19) yet had physicochem. properties outside the range associated with traditional CNS drugs. To address the potential risk of restricted CNS penetration with 2 in human clin. trials, we sought to identify a preclin. candidate with no asymmetry in rat brain penetration and that could advance into development. Merging the medicinal chem. strategies of structure-based design with parallel chem., a novel series of PDE9A inhibitors was identified that showed improved selectivity over PDE1C. Optimization afforded preclin. candidate 19 that demonstrated free brain/free plasma ≥1 in rat and reduced microsomal clearance along with the ability to increase cyclic guanosine monophosphosphate levels in rat CSF.

Formula: C8H15NO3, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Clegg, Michael A. team published research on Journal of Medicinal Chemistry in 2020 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Application of C9H17BO2

Application of C9H17BO2, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 72824-04-5, name is 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Clegg, Michael A.;Bamborough, Paul;Chung, Chun-wa;Craggs, Peter D.;Gordon, Laurie;Grandi, Paola;Leveridge, Melanie;Lindon, Matthew;Liwicki, Gemma M.;Michon, Anne-Marie;Molnar, Judit;Rioja, Inmaculada;Soden, Peter E.;Theodoulou, Natalie H.;Werner, Thilo;Tomkinson, Nicholas C. O.;Prinjha, Rab K.;Humphreys, Philip G. research published 《 Application of Atypical Acetyl-lysine Methyl Mimetics in the Development of Selective Inhibitors of the Bromodomain-Containing Protein 7 (BRD7)/Bromodomain-Containing Protein 9 (BRD9) Bromodomains》, the research content is summarized as follows. Non-BET bromodomain-containing proteins have become attractive targets for the development of novel therapeutics targeting epigenetic pathways. To help facilitate the target validation of this class of proteins, structurally diverse small-mol. ligands and methodologies to produce selective inhibitors in a predictable fashion are in high demand. Herein, we report the development and application of atypical acetyl-lysine (KAc) Me mimetics to take advantage of the differential stability of conserved water mols. in the bromodomain binding site. Discovery of the Bu group as an atypical KAc Me mimetic allowed generation of 31 (GSK6776) as a soluble, permeable, and selective BRD7/9 inhibitor from a pyridazinone template. The Bu group was then used to enhance the bromodomain selectivity of an existing BRD9 inhibitor and to transform pan-bromodomain inhibitors into BRD7/9 selective compounds Finally, a solvent-exposed vector was defined from the pyridazinone template to enable bifunctional mol. synthesis, and affinity enrichment chemoproteomic experiments were used to confirm several of the endogenous protein partners of BRD7 and BRD9, which form part of the chromatin remodeling PBAF and BAF complexes, resp.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Application of C9H17BO2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cui, J. Jean team published research on Journal of Medicinal Chemistry in 2011 | 141699-55-0

Related Products of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

In general, the hydroxyl group makes alcohols polar. 141699-55-0, formula is C8H15NO3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Related Products of 141699-55-0

Cui, J. Jean;Tran-Dube, Michelle;Shen, Hong;Nambu, Mitchell;Kung, Pei-Pei;Pairish, Mason;Jia, Lei;Meng, Jerry;Funk, Lee;Botrous, Iriny;McTigue, Michele;Grodsky, Neil;Ryan, Kevin;Padrique, Ellen;Alton, Gordon;Timofeevski, Sergei;Yamazaki, Shinji;Li, Qiuhua;Zou, Helen;Christensen, James;Mroczkowski, Barbara;Bender, Steve;Kania, Robert S.;Edwards, Martin P. research published 《 Structure Based Drug Design of Crizotinib (PF-02341066), a Potent and Selective Dual Inhibitor of Mesenchymal-Epithelial Transition Factor (c-MET) Kinase and Anaplastic Lymphoma Kinase (ALK)》, the research content is summarized as follows. Because of the critical roles of aberrant signaling in cancer, both c-MET and ALK receptor tyrosine kinases are attractive oncol. targets for therapeutic intervention. The cocrystal structure of 3 (PHA-665752), bound to c-MET kinase domain, revealed a novel ATP site environment, which served as the target to guide parallel, multiattribute drug design. A novel 2-amino-5-aryl-3-benzyloxypyridine series was created to more effectively make the key interactions achieved with 3. In the novel series, the 2-aminopyridine core allowed a 3-benzyloxy group to reach into the same pocket as the 2,6-dichlorophenyl group of 3 via a more direct vector and thus with a better ligand efficiency (LE). Further optimization of the lead series generated the clin. candidate crizotinib (PF-02341066), which demonstrated potent in vitro and in vivo c-MET kinase and ALK inhibition, effective tumor growth inhibition, and good pharmaceutical properties.

Related Products of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chen, Xuan team published research on Organic Letters in 2020 | 72824-04-5

HPLC of Formula: 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 72824-04-5, formula is C9H17BO2, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. HPLC of Formula: 72824-04-5

Chen, Xuan;Zard, Samir Z. research published 《 Convergent Route to β-Amino Acids and to β-Heteroarylethylamines: An Unexpected Vinylation Reaction》, the research content is summarized as follows. Various protected β2-amino acids can be prepared by radical addition of β-phthalimido-α-xanthyl propionic acid, both as the free acid or as the Et ester. Successive radical additions provide access to more complex structures. In the case of the free acid, addition to certain heteroaromatics leads directly to β-heteroarylethylamines through spontaneous decarboxylation of the intermediate adduct. Forcing the decarboxylation in some cases generated a vinyl group by decarboxylative elimination of the phthalimido group.

HPLC of Formula: 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chen, Ye-Wei team published research on Nature Communications in 2021 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Computed Properties of 72824-04-5

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Computed Properties of 72824-04-5

Chen, Ye-Wei;Liu, Yang;Lu, Han-Yu;Lin, Guo-Qiang;He, Zhi-Tao research published 《 Palladium-catalyzed regio- and enantioselective migratory allylic C(sp3)-H functionalization》, the research content is summarized as follows. Here a catalytic protocol for the long-standing challenging enantioselective allylic C(sp3)-H functionalization was reported. Through palladium hydride-catalyzed chain-walking and allylic substitution, allylic C-H functionalization of a wide range of acyclic nonconjugated dienes was achieved in high yields (up to 93% yield), high enantioselectivities (up to 98:2 er), and with 100% atom efficiency. Exploring the reactivity of substrates with varying pKa values uncovers a reasonable scope of nucleophiles and potential factors controlling the reaction. A set of efficient downstream transformations to enantiopure skeletons showcase the practical value of the methodol. Mechanistic experiments corroborate the PdH-catalyzed asym. migratory allylic substitution process.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Computed Properties of 72824-04-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chevis, Philip J. team published research on Chemical Communications (Cambridge, United Kingdom) in 2022 | 72824-04-5

Category: alcohols-buliding-blocks, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Category: alcohols-buliding-blocks

Chevis, Philip J.;Promchai, Thanika;Richardson, Christopher;Limtharakul, Thunwadee;Pyne, Stephen G. research published 《 Synthesis of syn- and enantioenriched anti-β-amino alcohols by highly diastereoselective borono-Mannich allylation reactions》, the research content is summarized as follows. A highly diastereoselective method for the synthesis of syn-β-amino alcs. and enantioenriched anti-β-amino alcs. was developed involving α-hydroxyl aldehydes and chiral α-phenylaminoxyaldehydes or α-benzoyloxyaldehydes, resp. in Petasis borono-Mannich allylation reactions. This study broadened the scope and utility of the Petasis reaction to include pinacol allylboronate and highlights its unique reactivity and stereochem. outcomes.

Category: alcohols-buliding-blocks, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cioffi, Christopher L. team published research on Journal of Medicinal Chemistry in 2014 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Application of C8H15NO3

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Application of C8H15NO3

Cioffi, Christopher L.;Dobri, Nicoleta;Freeman, Emily E.;Conlon, Michael P.;Chen, Ping;Stafford, Douglas G.;Schwarz, Daniel M. C.;Golden, Kathy C.;Zhu, Lei;Kitchen, Douglas B.;Barnes, Keith D.;Racz, Boglarka;Qin, Qiong;Michelotti, Enrique;Cywin, Charles L.;Martin, William H.;Pearson, Paul G.;Johnson, Graham;Petrukhin, Konstantin research published 《 Design, Synthesis, and Evaluation of Nonretinoid Retinol Binding Protein 4 Antagonists for the Potential Treatment of Atrophic Age-Related Macular Degeneration and Stargardt Disease》, the research content is summarized as follows. Accumulation of lipofuscin in the retina is associated with pathogenesis of atrophic age-related macular degeneration and Stargardt disease. Lipofuscin bisretinoids (exemplified by N-retinylidene-N-retinylethanolamine) seem to mediate lipofuscin toxicity. Synthesis of lipofuscin bisretinoids depends on the influx of retinol from serum to the retina. Compounds antagonizing the retinol-dependent interaction of retinol-binding protein 4 (RBP4) with transthyretin in the serum would reduce serum RBP4 and retinol and inhibit bisretinoid formation. The authors recently showed that I, a potent carboxylic acid based RBP4 antagonist, can significantly reduce lipofuscin bisretinoid formation in the retinas of Abca4-/- mice. As part of the NIH Blueprint Neurotherapeutics Network project the authors undertook the in vitro exploration to identify novel conformationally flexible and constrained RBP4 antagonists with improved potency and metabolic stability. The authors also demonstrate that upon acute and chronic dosing in rats, II, a potent cyclopentyl fused pyrrolidine antagonist, reduced circulating plasma RBP4 protein levels by approx. 60%.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Application of C8H15NO3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts