Ke, Yanguo’s team published research in International Journal of Molecular Sciences in 2019 | 78-70-6

International Journal of Molecular Sciences published new progress about Arabidopsis. 78-70-6 belongs to class alcohols-buliding-blocks, and the molecular formula is C10H18O, Computed Properties of 78-70-6.

Ke, Yanguo; Abbas, Farhat; Zhou, Yiwei; Yu, Rangcai; Yue, Yuechong; Li, Xinyue; Yu, Yunyi; Fan, Yanping published the artcile< Genome-wide analysis and characterization of the Aux/IAA family genes related to floral scent formation in Hedychium coronarium>, Computed Properties of 78-70-6, the main research area is IAA volatile compound floral scent Hedychium; Aux/IAA; HcIAA; Hedychium coronarium; floral scent.

Auxin plays a key role in different plant growth and development processes, including flower opening and development. The perception and signaling of auxin depend on the cooperative action of various components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play an imperative role. In a recent study, the entire Aux/IAA gene family was identified and comprehensively analyzed in Hedychium coronarium, a scented species used as an ornamental plant for cut flowers. Phylogenetic anal. showed that the Aux/IAA gene family in H. coronarium is slightly contracted compared to Arabidopsis, with low levels of non-canonical proteins. Sequence anal. of promoters showed numerous cis-regulatory elements related to various phytohormones. HcIAA genes showed distinct expression patterns in different tissues and flower developmental stages, and some HcIAA genes showed significant responses to auxin and ethylene, indicating that Aux/IAAs may play an important role in linking hormone signaling pathways. Based on the expression profiles, HcIAA2, HcIAA4, HcIAA6 and HcIAA12, were selected as candidate genes and HcIAA2 and HcIAA4 were screened for further characterization. Downregulation of HcIAA2 and HcIAA4 by virus-induced gene silencing in Hedychium coronarium flowers modified the total volatile compound content, suggesting that HcIAA2 and HcIAA4 play important roles in Hedychium coronarium floral scent formation. The results presented here will provide insights into the putative roles of HcIAA genes and will assist the elucidation of their precise roles during floral scent formation.

International Journal of Molecular Sciences published new progress about Arabidopsis. 78-70-6 belongs to class alcohols-buliding-blocks, and the molecular formula is C10H18O, Computed Properties of 78-70-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kim, Min-Gu’s team published research in International Immunopharmacology in 2019-09-30 | 78-70-6

International Immunopharmacology published new progress about Asthma. 78-70-6 belongs to class alcohols-buliding-blocks, and the molecular formula is C10H18O, Application In Synthesis of 78-70-6.

Kim, Min-Gu; Kim, Seong-Man; Min, Jae-Hong; Kwon, Ok-Kyoung; Park, Mi-Hyeong; Park, Ji-Won; Ahn, Hye In; Hwang, Jeong-Yeon; Oh, Sei-Raying; Lee, Jae-Won; Ahn, Kyung-Seop published the artcile< Anti-inflammatory effects of linalool on ovalbumin-induced pulmonary inflammation>, Application In Synthesis of 78-70-6, the main research area is allergic asthma airway inflammation mucus linalool therapeutics; Allergic asthma; Eosinophil; Linalool; Mucus; NF-κB; Th2 cytokines.

Linalool is a natural product present in fruits and aromatic plants with biol. activities. Researchers have reported that the inhalation of linalool exerts anti-inflammatory activities. In this study, we examined the therapeutic effects of linalool on airway inflammation and mucus overproduction in mice with allergic asthma. Oral administration of linalool significantly inhibited the levels of eosinophil numbers, Th2 cytokines and IgE (IgE) caused by ovalbumin (OVA) exposure. Linalool exerted preventive effects against the influx of inflammatory cells and mucus hypersecretion in the lung tissues. Linalool also dose-dependently decreased the levels of inducible nitric oxide synthase (iNOS) expression and protein kinase B (AKT) activation in the lung tissues. Linalool effectively downregulated the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB caused by OVA exposure. Furthermore, linalool exerted inhibitory effect on OVA-induced airway hyperresponsiveness (AHR). In the in vitro study, the increased secretion of MCP-1 was attenuated with linalool treatment in lipopolysaccharide (LPS)-stimulated H292 airway epithelial cells. In conclusion, linalool effectively exerts a protective role in OVA-induced airway inflammation and mucus hypersecretion, and its protective effects are closely related to the downregulation of inflammatory mediators and MAPKs/NF-kappaB signaling.

International Immunopharmacology published new progress about Asthma. 78-70-6 belongs to class alcohols-buliding-blocks, and the molecular formula is C10H18O, Application In Synthesis of 78-70-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jafari, Fariba’s team published research in Applied Organometallic Chemistry in 2020-11-30 | 699-12-7

Applied Organometallic Chemistry published new progress about [3+2] Cycloaddition reaction (homoselective). 699-12-7 belongs to class alcohols-buliding-blocks, and the molecular formula is C8H10OS, Category: alcohols-buliding-blocks.

Jafari, Fariba; Ghorbani-Choghamarani, Arash; Hasanzadeh, Neda published the artcile< Guanidine complex of copper supported on boehmite nanoparticles as practical, recyclable, chemo and homoselective organic-inorganic hybrid nanocatalyst for organic reactions>, Category: alcohols-buliding-blocks, the main research area is copper immobilized guanidine modified boehmite nanoparticle preparation thermal stability; nitrile copper guanidine modified boehmite nanoparticle catalyst homoselective cycloaddition; phenyl tetrazole preparation; sulfide copper guanidine modified boehmite nanoparticle catalyst chemoselective sulfoxidation; sulfinyl preparation.

Boehmite (BO) nanoparticles (NPs) were prepared via the injection of aqueous NaOH solution to aqueous aluminum nitrate solution at room temperature Afterwards, a new complex of copper was immobilized on BO-NPs (Cu-Guanidine@BO-NPs). This heterogeneous nanocatalyst was used as a practical, recyclable, chemo and homoselective nanocatalyst in the organic processes, i.e. the preparation of tetrazole five-membered heterocycles and chemoselective sulfoxidation of sulfides using H2O2 as oxidant. In this sense, the prepared nanocatalyst was characterized by AAS, N2 adsorption-desorption isotherms, WDX, EDS, SEM, and TGA techniques. The reusability of this catalyst was investigated in the described organic reactions for several runs without notable loss of its catalytic activity. Moreover, all of the tetrazole and sulfoxide derivatives were isolated in high Turn Over Number (TON) and Turn Over Frequency (TOF) numbers indicating the high activity and selectivity of Cu-Guanidine@BO-NPs in the described reactions.

Applied Organometallic Chemistry published new progress about [3+2] Cycloaddition reaction (homoselective). 699-12-7 belongs to class alcohols-buliding-blocks, and the molecular formula is C8H10OS, Category: alcohols-buliding-blocks.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Song, Ya’s team published research in International Journal of Biological Macromolecules in 2019-09-01 | 3458-28-4

International Journal of Biological Macromolecules published new progress about Health food (functional). 3458-28-4 belongs to class alcohols-buliding-blocks, and the molecular formula is C6H12O6, Electric Literature of 3458-28-4.

Song, Ya; Zhu, Minqian; Hao, Huili; Deng, Jie; Li, Meiying; Sun, Yuanming; Yang, Ruili; Wang, Hong; Huang, Riming published the artcile< Structure characterization of a novel polysaccharide from Chinese wild fruits (Passiflora foetida) and its immune-enhancing activity>, Electric Literature of 3458-28-4, the main research area is Passiflora polysaccharide immune enhancement; Immune-enhancing activity; Passiflora foetida; Polysaccharide; Structure characterization.

A novel polysaccharide (PFP1) with an average mol. weight of 2.02 × 105 g/mol was isolated from Passiflora foetida fruits through hot water extraction, ethanol precipitation and column chromatog. The structure of PFP1 was determined by GPC-MALS-RI, IC, FT-IR, GC-MS and NMR. The structural anal. showed that PFP1 was a heteropolysaccharide and composed of mannose (48.83%), galactose (32.46%), glucose (6.21%), arabinose (5.88%), fructose (2.24%), galacturonic acid (2.20%), xylose (1.17%), fucose (0.17%), ribose (0.05%), and glucuronic acid (0.78%), with a backbone structure of →1)-α-D-Manp→1,2)-β-D-Manp-linked 1,2,6)-β-D-Manp residues and side chains consisted of →1)-β-D-Galp, →1,4)-α-D-Manp, →1, 4)-β-D-Glcp, →1,3)-α-D-Galp, →1,6)-β-D-Manp, →1,6)-β-D-Galp, →1,2,3)-β-D-Manp and →1,3,6)-β-D-Galp residues. The results of immune-enhancing assays revealed that PFP1 could obviously promote the production of NO and secretion of cytokines (TNF-α and IL-6) of macrophage RAW264.7. These findings demonstrate that P. foetida fruit polysaccharides can be utilized as a potential immune-enhancing functional food.

International Journal of Biological Macromolecules published new progress about Health food (functional). 3458-28-4 belongs to class alcohols-buliding-blocks, and the molecular formula is C6H12O6, Electric Literature of 3458-28-4.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhang, Bo’s team published research in Environmental Science & Technology in 2020-10-06 | 492-62-6

Environmental Science & Technology published new progress about Antibacterial agents. 492-62-6 belongs to class alcohols-buliding-blocks, and the molecular formula is C6H12O6, Computed Properties of 492-62-6.

Zhang, Bo; Yu, Pingfeng; Wang, Zijian; Alvarez, Pedro J. J. published the artcile< Hormetic promotion of biofilm growth by polyvalent bacteriophages at low concentrations>, Computed Properties of 492-62-6, the main research area is hormetic promotion biofilm growth polyvalent bacteriophages concentration.

Interactions between bacteriophages (phages) and biofilms are poorly understood despite their broad ecol. and water quality implications. Here, we report that biofilm exposure to lytic polyvalent phages at low concentrations (i.e., 102-104 phages/mL) can counterintuitively promote biofilm growth and densification (corroborated by confocal laser scanning microscopy (CLSM)). Such exposure hormetically upregulated quorum sensing genes (by 4.1- to 24.9-fold), polysaccharide production genes (by 3.7- to 9.3-fold), and curli synthesis genes (by 4.5- to 6.5-fold) in the biofilm-dwelling bacterial hosts (i.e., Escherichia coli and Pseudomonas aeruginosa) relative to unexposed controls. Accordingly, the biofilm matrix increased its polysaccharide and extracellular DNA content relative to unexposed controls (by 41.8 ± 2.3 and 81.4 ± 2.2%, resp.), which decreased biofilm permeability and increased structural integrity. This contributed to enhanced resistance to disinfection with chlorine (bacteria half-lives were 6.08 ± 0.05 vs 3.91 ± 0.03 min for unexposed controls) and to subsequent phage infection (biomass removal was 18.2 ± 1.2 vs 32.3 ± 1.2% for unexposed controls), apparently by mitigating diffusion of these antibacterial agents through the biofilm. Overall, low concentrations of phages reaching a biofilm may result in unintended biofilm stimulation, which might accelerate biofouling, biocorrosion, or other biofilm-related water quality problems.

Environmental Science & Technology published new progress about Antibacterial agents. 492-62-6 belongs to class alcohols-buliding-blocks, and the molecular formula is C6H12O6, Computed Properties of 492-62-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gobbini, Mauro team published research on Journal of Medicinal Chemistry in 2008 | 141699-55-0

Computed Properties of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 141699-55-0, formula is C8H15NO3, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Computed Properties of 141699-55-0

Gobbini, Mauro;Armaroli, Silvia;Banfi, Leonardo;Benicchio, Alessandra;Carzana, Giulio;Fedrizzi, Giorgio;Ferrari, Patrizia;Giacalone, Giuseppe;Giubileo, Michele;Marazzi, Giuseppe;Micheletti, Rosella;Moro, Barbara;Pozzi, Marco;Scotti, Piero Enrico;Torri, Marco;Cerri, Alberto research published 《 Novel Analogues of Istaroxime, a Potent Inhibitor of Na+,K+-ATPase: Synthesis and Structure-Activity Relationship》, the research content is summarized as follows. The authors report the synthesis and biol. properties of novel inhibitors of the Na+,K+-ATPase as pos. inotropic compounds Following the previously described model from which istaroxime was generated, the 5α,14α-androstane skeleton was used as a scaffold to study the space around the basic chain of the lead compound Some compounds demonstrated higher potencies than istaroxime on the receptor and the derivative (I) was the most potent; as further confirmation of the model, the E isomers of the oxime are more potent than the Z form. The compounds tested in the guinea pig model induced pos. inotropic effects, which are correlated to the in vitro inhibitory potency on the Na+,K+-ATPase. The finding that all tested compounds resulted less proarrhythmogenic than digoxin, a currently clin. used pos. inotropic agent, suggests that this could be a feature of the 3-aminoalkyloxime derivative class of 5α,14α-androstane.

Computed Properties of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gong, Yuxin team published research on Angewandte Chemie, International Edition in 2022 | 141699-55-0

Synthetic Route of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

In general, the hydroxyl group makes alcohols polar. 141699-55-0, formula is C8H15NO3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Synthetic Route of 141699-55-0

Gong, Yuxin;Su, Lei;Zhu, Zhaodong;Ye, Yang;Gong, Hegui research published 《 Nickel-Catalyzed Thermal Redox Functionalization of C(sp3)-H Bonds with Carbon Electrophiles》, the research content is summarized as follows. A Ni-catalyzed arylation and alkylation of C(sp3)-H bonds with organohalides to forge C(sp3)-C bonds by merging economical Zn and tBuOOtBu (DTBP) as the external reductant and oxidant was reported. The mild and easy-to-operate protocol enabled facile carbofunctionalization of N-/O-α- and cyclohexane C-H bonds, and preparation of a few intermediates of bioactive compounds and drug derivatives Preliminary mechanistic studies implied addition of an alkyl radical to a NiII salt.

Synthetic Route of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Goswami, Prithwish team published research on Nature Communications in 2022 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Formula: C9H17BO2

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 72824-04-5, formula is C9H17BO2, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Formula: C9H17BO2

Goswami, Prithwish;Cho, Sung Yeon;Park, Jin Hyun;Kim, Woo Hee;Kim, Hyun Jin;Shin, Myoung Hyeon;Bae, Han Yong research published 《 Efficient access to general α-tertiary amines via water-accelerated organocatalytic multicomponent allylation》, the research content is summarized as follows. A tetrasubstituted carbon atom connected by three sp3 or sp2-carbons with single nitrogen, i.e., the α-tertiary amines I [R = n-Pr, CH2CO2Et, Ph, etc.; R1 = Me, Et, n-Pr, etc.], was an essential structure of diverse naturally occurring alkaloids and pharmaceuticals. The synthetic approach toward ATA structures was intricate, therefore, a straightforward catalytic method had remained a substantial challenge. Herein, an efficient water-accelerated organocatalytic allylation to directly access ATA incorporating homoallylic amine structures I by exploiting readily accessible general ketones/keto esters as useful starting material along with allyl boronic acid esters and benzhydrazide/amines. The synergistic action of a hydrophobic Bronsted acid in combination with a squaramide hydrogen-bonding donor under aqueous condition enabled the facile formation of the desired moiety I. The developed exceptionally mild but powerful system facilitated a broad substrate scope and enabled efficient multi-gram scalability.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Formula: C9H17BO2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gurrentz, Joseph M. team published research on Journal of the American Chemical Society in 2020 | 72824-04-5

Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 72824-04-5, formula is C9H17BO2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Gurrentz, Joseph M.;Rose, Michael J. research published 《 Non-Catalytic Benefits of Ni(II) Binding to an Si(111)-PNP Construct for Photoelectrochemical Hydrogen Evolution Reaction: Metal Ion Induced Flat Band Potential Modulation》, the research content is summarized as follows. We report here the remarkable and non-catalytic beneficial effects of a Ni(II) ion binding to a Si|PNP type surface as a result of significant thermodn. band bending induced by ligand attachment and Ni(II) binding. We unambiguously deconvolute the thermodn. flat band potentials (VFB) from the kinetic onset potentials (Von) by synthesizing a specialized bis-PNP macrochelate that enables one-step Ni(II) binding to a p-Si(111) substrate. XPS anal. and rigorous control experiments confirm covalent attachment of the designed ligand and its resulting Ni(II) complex. Illuminated J-V measurements under catalytic conditions show that the Si|BisPNP-Ni substrate exhibits the most pos. onset potential for the hydrogen evolution reaction (HER) (-0.55 V vs Fc/Fc+) compared to other substrates herein. Thermodn. flat band potential measurements in the dark reveal that Si|BisPNP-Ni also exhibits the most pos. VFB value (-0.02 V vs Fc/Fc+) by a wide margin. Electrochem. impedance spectroscopy data generated under illuminated, catalytic conditions demonstrate a surprising lack of correlation evident between Von and equivalent circuit element parameters commonly associated with HER. Overall, the resulting paradigm comprises a system wherein the extent of band bending induced by metal ion binding is the primary driver of photoelectrochem. (PEC)-HER benefits, while the kinetic (catalytic) effects of the PNP-Ni(II) are minimal. This suggests that dipole and band-edge engineering must be a primary design consideration (not secondary to catalyst) in semiconductor|catalyst hybrids for PEC-HER.

Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hamajima, Toshihiro team published research on Bioorganic & Medicinal Chemistry in 2018 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Computed Properties of 141699-55-0

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 141699-55-0, formula is C8H15NO3, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Computed Properties of 141699-55-0

Hamajima, Toshihiro;Takahashi, Fumie;Kato, Koji;Sugano, Yukihito;Yamaki, Susumu;Moritomo, Ayako;Kubo, Satoshi;Nakamura, Koji;Yamagami, Kaoru;Hamakawa, Nozomu;Yokoo, Koji;Fukahori, Hidehiko research published 《 Optimization and in vivo evaluation of pyrazolopyridines as a potent and selective PI3Kδ inhibitor》, the research content is summarized as follows. Chem. optimization of pyrazolopyridine 1, focused on cellular potency, isoform selectivity and microsomal stability, led to the discovery of the potent, selective and orally available PI3Kδ inhibitor 5d. On the basis of its desirable potency, selectivity and pharmacokinetic profiles, 5d was tested in the trinitrophenylated aminoethylcarboxymethyl-Ficoll (TNP-Ficoll)-induced antibody production model, and showed higher antibody inhibition than a 4-fold oral dose of the starting compound 1. These excellent results suggest that 5d is a potential candidate for further studies in the treatment of autoimmune diseases and leukocyte malignancies.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Computed Properties of 141699-55-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts