Can You Really Do Chemisty Experiments About 105-13-5

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kurbah, SD or concate me.. Formula: C8H10O2

I found the field of Chemistry very interesting. Saw the article Dioxido-vanadium(V) complex catalyzed oxidation of alcohols and tandem synthesis of oximes: a simple catalytic protocol for C-N bond formation published in 2021. Formula: C8H10O2, Reprint Addresses Kurbah, SD (corresponding author), Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Dept Chem, Eraligool 788723, Assam, India.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

We report the synthesis of a vanadium(V) complex characterized by FT-IR and H-1 NMR spectroscopy. The structure of the complex was established by single crystal X-ray crystallography. We also carried out the catalytic oxidation of benzyl alcohol, hetero-aryl alcohols and propargylic alcohols. Tandem synthesis of oximes from alcohols were also carried out using our vanadium(V) complex. The newly synthesized complex acts as a catalyst for oxidation reactions and tandem synthesis of oxime from alcohols. [GRAPHICS] .

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kurbah, SD or concate me.. Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What kind of challenge would you like to see in a future of compound:(4-Methoxyphenyl)methanol

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Luo, NH; Zhong, YH; Wen, HL; Shui, HL; Luo, RS or concate me.

Application In Synthesis of (4-Methoxyphenyl)methanol. Authors Luo, NH; Zhong, YH; Wen, HL; Shui, HL; Luo, RS in WILEY-V C H VERLAG GMBH published article about in [Luo, Nianhua; Zhong, Yuhong; Wen, Huiling; Shui, Hongling; Luo, Renshi] Gannan Med Univ, Sch Pharmaceut Sci, Ganzhou 341000, Jiangxi, Peoples R China in 2021, Cited 94. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Ketones are of great importance in synthesis, biology, and pharmaceuticals. This paper reports an iridium complexes-catalyzed cross-coupling of alcohols via hydrogen borrowing, affording a series of alpha-alkylated ketones in high yield (86 %-95 %) and chemoselectivities (>99 : 1). This methodology has the advantages of low catalyst loading (0.1 mol%) and environmentally benign water as the solvent. Studies have shown the amount of base has a great impact on chemoselectivities. Meanwhile, deuteration experiments show water plays an important role in accelerating the reduction of the unsaturated ketones intermediates. Remarkably, a gram-scale experiment demonstrates this methodology of iridium-catalyzed cross-coupling of alcohols has potential application in the practical synthesis of alpha-alkylated ketones.

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Luo, NH; Zhong, YH; Wen, HL; Shui, HL; Luo, RS or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Get Up to Speed Quickly on Emerging Topics:(4-Methoxyphenyl)methanol

Category: alcohols-buliding-blocks. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Inatomi, S; Takayanagi, Y; Watanabe, K; Toita, A; Yamakoshi, H; Nakamura, S or concate me.

In 2021 SYNTHESIS-STUTTGART published article about ASYMMETRIC CONJUGATE ADDITION; ENANTIOSELECTIVE SYNTHESIS; TETRAHYDROPYRAN; HYDRATION; ACIDS in [Inatomi, Saki; Takayanagi, Yuta; Watanabe, Kento; Toita, Akinori; Yamakoshi, Hiroyuki; Nakamura, Seiichi] Nagoya City Univ, Grad Sch Pharmaceut Sci, Mizuho Ku, 3-1 Tanabe Dori, Nagoya, Aichi 4678603, Japan in 2021, Cited 26. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Category: alcohols-buliding-blocks

The scope and limitations of the diastereoselective 1,4-addition reaction of primary alcohols to gamma-alkoxy-alpha,beta-unsaturated esters were investigated. We found that a variety of sodium alkoxides, generated from the corresponding primary alcohols with NaH, underwent 1,4-addition reactions with (E)-enoates in CH(2)Cl(2)at -23 degrees C to give beta-alkoxy esters in modest yields with good to excellentsyn-selectivity, whereas stereoselectivity was not observed with the use of glycerol derivatives as nucleophiles. Cyclic acetal protection was found to play a pivotal role for the reaction to proceed.

Category: alcohols-buliding-blocks. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Inatomi, S; Takayanagi, Y; Watanabe, K; Toita, A; Yamakoshi, H; Nakamura, S or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Extended knowledge of C8H10O2

COA of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Padmanaban, S; Gunasekar, GH; Yoon, S or concate me.

An article Direct Heterogenization of the Ru-Macho Catalyst for the Chemoselective Hydrogenation of alpha,beta-Unsaturated Carbonyl Compounds WOS:000653539100005 published article about RUTHENIUM PINCER COMPLEX; POROUS ORGANIC POLYMER; SELECTIVE HYDROGENATION; HOMOGENEOUS HYDROGENATION; UNSATURATED ALDEHYDES; CYCLIC CARBONATES; ACTIVATED CARBON; SCALE SYNTHESIS; EFFICIENT; METHANOL in [Padmanaban, Sudakar; Yoon, Sungho] Chung Ang Univ, Dept Chem, Seoul 06974, South Korea; [Padmanaban, Sudakar] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea; [Gunasekar, Gunniya Hariyanandam] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 136791, South Korea in 2021, Cited 95. COA of Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In this study, a commercially available homogeneous pincer-type complex, Ru-Macho, was directly heterogenized via the Lewis acid-catalyzed Friedel-Crafts reaction using dichloromethane as the cross-linker to obtain a heterogeneous, pincer-type Ru porous organometallic polymer (Ru-Macho-POMP) with a high surface area. Notably, Ru-Macho-POMP was demonstrated to be an efficient heterogeneous catalyst for the chemoselective hydrogenation of alpha,beta-unsaturated carbonyl compounds to their corresponding allylic alcohols using cinnamaldehyde as a model compound. The Ru-Macho-POMP catalyst showed a high turnover frequency (TOF = 920 h(-1)) and a high turnover number (TON = 2750), with high chemoselectivity (99%) and recyclability during the selective hydrogenation of alpha, beta-unsaturated carbonyl compounds.

COA of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Padmanaban, S; Gunasekar, GH; Yoon, S or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Downstream Synthetic Route Of (4-Methoxyphenyl)methanol

Recommanded Product: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Verma, A; Hazra, S; Dolui, P; Elias, AJ or concate me.

Recommanded Product: (4-Methoxyphenyl)methanol. In 2021 ASIAN J ORG CHEM published article about CARBOXYLIC-ACID SALTS; SECONDARY ALCOHOLS; DEHYDROGENATIVE OXIDATION; DIRECT FUNCTIONALIZATION; CROSS-COUPLINGS; COMPLEX BEARING; N-ALKYLATION; PPM LEVELS; WATER; COBALT in [Verma, Ashutosh; Hazra, Susanta; Dolui, Pritam; Elias, Anil J.] Indian Inst Technol, Dept Chem, New Delhi 110016, India in 2021, Cited 118. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Herein, we report a simple, efficient, and sustainable method for the synthesis of alpha-alkylated ketones and quinolines using a hydrogen-borrowing strategy, which has emerged as a greener alternative in organic transformation reactions. Synthesis of a range of alpha-alkylated ketones and quinoline derivatives was achieved by using the water-soluble [Ru(8-AQ)Cl(p-cym.)]Cl-+(-) [Ru]-1 (AQ=aminoquinoline) catalyst with water as the reaction medium. By adopting this strategy, we have synthesized alpha-alkylated ketones and quinolines using ketones or secondary alcohols as starting materials and the primary alcohol as a green and naturally abundant alkylating agent.

Recommanded Product: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Verma, A; Hazra, S; Dolui, P; Elias, AJ or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Extended knowledge of 105-13-5

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Shahriari, M; Sedigh, MA; Mahdavian, Y; Mahdigholizad, S; Pirhayati, M; Karmakar, B; Veisi, H or concate me.

Shahriari, M; Sedigh, MA; Mahdavian, Y; Mahdigholizad, S; Pirhayati, M; Karmakar, B; Veisi, H in [Shahriari, Marjan] Islamic Azad Univ, Fac Pharmaceut Chem, Dept Pharmaceut Chem, Tehran Med Sci, Tehran, Iran; [Sedigh, Mohammad Alihosseini] Islamic Azad Univ, Fac Pharmaceut Chem, Dept Organ Chem, Tehran Med Sci, Tehran, Iran; [Mahdavian, Yasamin] Islamic Azad Univ, Fac Pharmaceut Chem, Dept Appl Chem, Tehran Med Sci, Tehran, Iran; [Mahdigholizad, Siavash] Iran Univ Med Sci, Sch Med, Tehran, Iran; [Pirhayati, Mozhgan] Malayer Univ, Fac Sci, Dept Appl Chem, Malayer, Iran; [Karmakar, Bikash] Gobardanga Hindu Coll, Dept Chem, Gobardanga, India; [Veisi, Hojat] Payame Noor Univ, Dept Chem, Tehran, Iran published In situ supported Pd NPs on biodegradable chitosan/agarose modified magnetic nanoparticles as an effective catalyst for the ultrasound assisted oxidation of alcohols and activities against human breast cancer in 2021, Cited 57. Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

In this content, a green approach for the ultrasound promoted in situ immobilization of Pd NPs over biodegradable chitosan/agarose modified ferrite NP (Fe3O4@CS-Agarose/Pd) is developed. The structural and physicochemical features of the material were estimated using advanced analytical techniques like FT-IR, ICP-OES, FESEM, EDS, XRD, TEM and VSM. The magnetic material was catalytically explored in the oxidation of alcohols under ultrasonic waves. Sonication had a significant role in enhancing the catalytic performance in the alcohol’s oxidation as compared to conventional heating. The heterogeneous nanocatalyst was efficiently recycled up to 10 times with nominal loss in catalytic activity. Towards the biological applications, the Fe3O4@CS-Agarose/Pd nanocomposite showed high antioxidant activities against DPPH free radicals, comparable to standard butylated hydroxytoluene (BHT). In addition, it exhibited excellent cytotoxicity in terms of % cell viability against breast adenocarcinoma (MCF7), breast carcinoma (Hs 578Bst), infiltrating ductal cell carcinoma (Hs 319.T), and metastatic carcinoma (MDA-MB-453) cell lines. The best anti-breast cancer potential of the nanocomposite was observed in Hs 319.T cell line. (C) 2021 Published by Elsevier B.V.

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Shahriari, M; Sedigh, MA; Mahdavian, Y; Mahdigholizad, S; Pirhayati, M; Karmakar, B; Veisi, H or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The Shocking Revelation of 105-13-5

Product Details of 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Naganawa, Y; Sakamoto, K; Nakajima, Y or concate me.

Product Details of 105-13-5. Naganawa, Y; Sakamoto, K; Nakajima, Y in [Naganawa, Yuki; Sakamoto, Kei; Nakajima, Yumiko] Natl Inst Adv Ind Sci & Technol, Interdisciplinary Res Ctr Catalyt Chem IRC3, Tsukuba, Ibaraki 3058565, Japan published A General and Selective Synthesis of Methylmonochlorosilanes from Di-, Tri-, and Tetrachlorosilanes in 2021, Cited 50. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Direct catalytic transformation of chlorosilanes into organosilicon compounds remains challenging due to difficulty in cleaving the strong Si-Cl bond(s). We herein report the palladium-catalyzed cross-coupling reaction of chlorosilanes with organoaluminum reagents. A combination of [Pd(C3H5)Cl](2) and DavePhos ligand catalyzed the selective methylation of various dichlorosilanes 1, trichlorosilanes 5, and tetrachlorosilane 6 to give the corresponding monochlorosilanes.

Product Details of 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Naganawa, Y; Sakamoto, K; Nakajima, Y or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Brief introduction of (4-Methoxyphenyl)methanol

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Li, DF; Wang, JG; Xu, FX; Zhang, NC; Men, Y or concate me.

In 2021 CATAL SCI TECHNOL published article about EXPOSED 001 FACETS; SOOT OXIDATION ACTIVITY; VISIBLE PHOTOCATALYST; DOPED TIO2; PERCENTAGE; NANOCOMPOSITES; PERFORMANCE; NANOSHEETS; CATALYSTS; CRYSTALS in [Li, Dianfeng; Wang, Jinguo; Xu, Fengxia; Zhang, Nianchen; Men, Yong] Shanghai Univ Engn Sci, Sch Chem & Chem Engn, Shanghai 201620, Peoples R China in 2021, Cited 46. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. HPLC of Formula: C8H10O2

Selective conversion of aromatic alcohols to value-added chemicals is becoming an emerging research hotspot in heterogeneous photocatalysis, but its critical challenge is how to construct highly efficient photocatalysts. Herein, mesoporous (001)-TiO2 nanocrystals with tailored Ti3+ and surface oxygen vacancies have been fabricated by a facile hydrothermal route, showing remarkably boosted photoactivity for selective conversion of aromatic alcohols to carbonyl compounds in water medium under visible-light irradiation. Results attest that the remarkably boosted photoactivity was mainly correlated with the strong synergetic effect of exposed (001) facets, Ti3+ self-doping, and surface oxygen vacancies, leading to the enhanced reactant (aromatic alcohols and O-2) activation via the high surface energy of (001) facets, the improved visible-light absorbance via the intrinsic band gap narrowing, and the escalated photoelectron-hole separation efficiency via Ti3+ and surface oxygen vacancies acting as electron sinks. Meanwhile, a plausible photocatalytic mechanism for selective conversion of aromatic alcohols to carbonyl compounds has been elucidated in detail based on active species identified by capture experiments. It is hoped that this work can deliver some new insights into the rational design of highly efficient photocatalysts applied in future green organic selective transformation reactions.

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Li, DF; Wang, JG; Xu, FX; Zhang, NC; Men, Y or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The Shocking Revelation of (4-Methoxyphenyl)methanol

Recommanded Product: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Nasseri, MA; Rezazadeh, Z; Kazemnejadi, M; Allahresani, A or concate me.

An article Cu-Mn Bimetallic Complex Immobilized on Magnetic NPs as an Efficient Catalyst for Domino One-Pot Preparation of Benzimidazole and Biginelli Reactions from Alcohols WOS:000567788200001 published article about AEROBIC OXIDATION; AROMATIC DIAMINES; MULTICOMPONENT REACTIONS; SELECTIVE OXIDATION; COUPLING REACTIONS; SCHIFF-BASE; NANOCATALYST; NANOPARTICLES; HANTZSCH; COPPER in [Nasseri, Mohammad Ali; Rezazadeh, Zinat; Kazemnejadi, Milad; Allahresani, Ali] Univ Birjand, Dept Chem, Fac Sci, Birjand 97175615, Iran in 2021, Cited 73. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Recommanded Product: 105-13-5

An efficient magnetically recyclable bimetallic catalyst by anchoring copper and manganese complexes on the Fe(3)O(4)NPs was prepared and named as Fe3O4@Cu-Mn. It was founded as a powerful catalyst for the domino one-pot oxidative benzimidazole and Biginelli reactions from benzyl alcohols as a green protocol in the presence of air, under solvent-free and mild conditions. Fe3O4@Cu-Mn NPs were well characterized by FT-IR, XRD, FE-SEM, TEM, VSM, TGA, EDX, DLS, and ICP analyses. The optimum range of parameters such as time, temperature, amount of catalyst, and solvent were investigated for the domino one-pot benzimidazole and Biginelli reactions to find the optimum reaction conditions. The catalyst was compatible with a variety of benzyl alcohols, which provides favorable products with good to high yields for all of derivatives. Hot filtration and Hg poisoning tests from the nanocatalyst revealed the stability, low metal leaching and heterogeneous nature of the catalyst. To prove the synergistic and cooperative effect of the catalytic system, the various homologues of the catalyst were prepared and then applied to a model reaction separately. Finally, the catalyst could be filtered from the reaction mixture simply, and reused for five consecutive cycles with a minimum loss in catalytic activity and performance. Graphic A new magnetically recyclable Cu/Mn bimetallic catalyst has been developed for domino one-pot oxidation-condensation of benzimidazole and Biginelli reactions from alcohols.

Recommanded Product: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Nasseri, MA; Rezazadeh, Z; Kazemnejadi, M; Allahresani, A or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Search for chemical structures by a sketch :105-13-5

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, JD; Cui, W; Chen, RM; He, Y; Yuan, CW; Sheng, JP; Li, JY; Zhan, YX; Dong, F; Sun, YJ or concate me.. Product Details of 105-13-5

An article OH/Na co-functionalized carbon nitride: directional charge transfer and enhanced photocatalytic oxidation ability WOS:000509894100024 published article about FACILE SYNTHESIS; REACTANTS ACTIVATION; NO ADSORPTION; DOPED G-C3N4; EFFICIENT; NANOSHEETS; ZIRCONIA; REACTIVITY; VACANCIES; MECHANISM in [Wang, Jiadong; Chen, Ruimin; Yuan, Chaowei; Dong, Fan; Sun, Yanjuan] Chongqing Technol & Business Univ, Coll Environm & Resources, Chongqing Key Lab Catalysis & New Environm Mat, Chongqing 400067, Peoples R China; [Wang, Jiadong; Cui, Wen; He, Ye; Yuan, Chaowei; Sheng, Jianping; Li, Jieyuan; Dong, Fan; Sun, Yanjuan] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Res Ctr Environm Sci & Technol, Chengdu 611731, Peoples R China; [Cui, Wen] Southwest Petr Univ, Sch Mat Sci & Engn, Ctr New Energy Mat & Thchnol, Chengdu 610500, Peoples R China; [Zhan, Yuxin] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China in 2020, Cited 60. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Product Details of 105-13-5

Graphitic carbon nitride (g-C3N4, CN for short) is a compelling visible-light responsive photocatalyst. However, its photocatalytic efficiency is low due to the random carrier transfer in planes and insufficient redox potential. Herein, we build oxygen functional group modified sodium-doped carbon nitride (OH/Na co-functionalized carbon nitride) to promote directional transfer of charge carriers for acceleration of separation and enhance redox potential for efficient oxidation of NO in air. Specifically, the function of sodium atoms could control the directional transfer of random carriers from the intralayer to the oxygen functional group-modified surface for the purpose of effectively reducing photogenerated electron-hole recombination. Meanwhile, the modification by oxygen-containing functional groups could adjust the band structure of CN, thereby increasing the oxidation-reduction potential of NO in the photocatalyst. The transformation pathways and reaction mechanism of photocatalytic NO oxidation on CN and OH/Na co-functionalized carbon nitride have also been explicated by ESR spectroscopy and in situ DRIFTS and compared. This work provides a new method for simultaneously controlling the random transfer of carriers and adjusting the energy band structure of CN to optimize its photocatalytic efficiency. It is also possible to extend this strategy to improve the performance of other 2D layered catalysts for photocatalytic oxidation.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, JD; Cui, W; Chen, RM; He, Y; Yuan, CW; Sheng, JP; Li, JY; Zhan, YX; Dong, F; Sun, YJ or concate me.. Product Details of 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts