Never Underestimate The Influence Of 105-13-5

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Zhang, S; Li, LJ; Li, JJ; Shi, JX; Xu, K; Gao, WC; Zong, LY; Li, GG; Findlater, M or concate me.

HPLC of Formula: C8H10O2. I found the field of Chemistry very interesting. Saw the article Electrochemical Arylation of Aldehydes, Ketones, and Alcohols: from Cathodic Reduction to Convergent Paired Electrolysis published in 2021, Reprint Addresses Zhang, S; Xu, K (corresponding author), Nanyang Normal Univ, Coll Chem & Pharmaceut Engn, Engn Technol Res Ctr Henan Prov Photo & Electroch, Nanyang, Peoples R China.; Findlater, M (corresponding author), Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79423 USA.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol.

Arylation of carbonyls, one of the most common approaches toward alcohols, has received tremendous attention, as alcohols are important feedstocks and building blocks in organic synthesis. Despite great progress, there is still a great gap to develop an ideal arylation method featuring mild conditions, good functional group tolerance, and readily available starting materials. We now show that electrochemical arylation can fill the gap. By taking advantage of synthetic electrochemistry, commercially available aldehydes (ketones) and benzylic alcohols can be readily arylated to provide a general and scalable access to structurally diverse alcohols (97 examples, >10 gram-scale). More importantly, convergent paired electrolysis, the ideal but challenging electrochemical technology, was employed to transform low-value alcohols into more useful alcohols. Detailed mechanism study suggests that two plausible pathways are involved in the redox neutral alpha-arylation of benzylic alcohols.

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Zhang, S; Li, LJ; Li, JJ; Shi, JX; Xu, K; Gao, WC; Zong, LY; Li, GG; Findlater, M or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemical Properties and Facts of (4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Chahboun, R; Botubol-Ares, JM; Duran-Pena, MJ; Jimenez, F; Alvarez-Manzaneda, R; Alvarez-Manzaneda, E or concate me.. Application In Synthesis of (4-Methoxyphenyl)methanol

An article Deconjugative alpha-Alkylation of Cyclohexenecarboxaldehydes: An Access to Diverse Terpenoids WOS:000670661000018 published article about ALLYLATION; ALDEHYDES in [Botubol-Ares, Jose Manuel; Jesus Duran-Pena, Maria] Univ Cadiz, Fac Ciencias, Dept Quim Organ, Campus Univ Rio San Pedro S-N,4a Planta, Cadiz 11510, Spain; [Chahboun, Rachid; Jimenez, Fermin; Alvarez-Manzaneda, Enrique] Univ Granada, Fac Ciencias, Inst Biotecnol, Dept Quim Organ, Granada 18071, Spain; [Alvarez-Manzaneda, Ramon] Univ Almeria, Dept Quim & Fis, Area Quim Organ, Almeria 04120, Spain in 2021, Cited 37. Application In Synthesis of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A general and efficient method for the deconjugative alpha-alkylation of alpha,beta-unsaturated aldehydes promoted by a synergistic effect between (BuOK)-Bu-t and NaH, which considerably increases the reaction rate under mild conditions, is reported. The beta,gamma-unsaturated aldehyde, resulting from the alpha-alkylation, is transformed in high yield into the corresponding allyl acetate via a lead(IV) acetate-mediated oxidative fragmentation. This strategy could be used for the construction of the carbon skeleton of a wide variety of alkyl or arylterpenoids.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Chahboun, R; Botubol-Ares, JM; Duran-Pena, MJ; Jimenez, F; Alvarez-Manzaneda, R; Alvarez-Manzaneda, E or concate me.. Application In Synthesis of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

A new application aboutC8H10O2

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, ML; Xu, ZK; Shi, Y; Cai, F; Qiu, JQ; Yang, G; Hua, Z; Chen, T or concate me.. SDS of cas: 105-13-5

An article TEMPO-Functionalized Nanoreactors from Bottlebrush Copolymers for the Selective Oxidation of Alcohols in Water WOS:000664332300013 published article about FREE AEROBIC OXIDATION; SUPPORTED TEMPO; ASYMMETRIC SULFOXIDATION; BLOCK-COPOLYMERS; CATALYST; METAL; EFFICIENT; DEHYDROGENATION; ALDEHYDES in [Wang, Maolin; Xu, Zhenkai; Shi, Yi; Cai, Fang; Qiu, Jiaqi; Chen, Tao] Zhejiang Sci Tech Univ, Minist Educ, Key Lab Adv Text Mat & Mfg Technol, Hangzhou 310018, Peoples R China; [Wang, Maolin; Xu, Zhenkai; Shi, Yi; Cai, Fang; Qiu, Jiaqi; Chen, Tao] Zhejiang Sci Tech Univ, Minist Educ, Ecodyeing & Finishing Engn Res Ctr, Hangzhou 310018, Peoples R China; [Wang, Maolin; Xu, Zhenkai; Shi, Yi; Cai, Fang; Qiu, Jiaqi; Chen, Tao] Zhejiang Sci Tech Univ, Natl Base Int Sci & Technol Cooperat Text & Consu, Hangzhou 310018, Peoples R China; [Shi, Yi; Cai, Fang] Zhejiang Cady Ind Co Ltd, Huzhou 313013, Peoples R China; [Yang, Guang; Hua, Zan] Anhui Agr Univ, Biomass Mol Engn Ctr, Dept Mat Sci & Engn, Hefei 230036, Peoples R China in 2021, Cited 56. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. SDS of cas: 105-13-5

Polymeric nanoreactors in water fabricated by the self-assembly of amphiphilic copolymers have attracted much attention due to their good catalytic performance without using organic solvents. However, the disassembly and instability of relevant nanostructures often compromise their potential applicability. Herein, the preparation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-containing nanoreactors by the self-assembly of amphiphilic bottle-brush copolymers has been demonstrated. First, a macromonomer having a norbornenyl polymerizable group was prepared by RAFT polymerization of hydrophobic and hydrophilic monomers. The macromonomer was further subjected to ring-opening metathesis polymerization to produce an amphiphilic bottlebrush copolymer. Further, TEMPO, as a catalyst, was introduced into the hydrophobic block through the activated ester strategy. Finally, TEMPO-functionalized polymeric nanoreactors were successfully obtained by self-assembly in water. The nanoreactors exhibited excellent catalytic activities in selective oxidation of alcohols in water. More importantly, the reaction kinetics showed that the turnover frequency is greatly increased compared to that of the similar nanoreactor prepared from liner copolymers under the same conditions. The outstanding catalytic activities of the nanoreactors from bottlebrush copolymers could be attributed to the more stable micellar structure using the substrate concentration effect. This work presents a new strategy to fabricate stable nanoreactors, paving the way for highly efficient organic reactions in aqueous solutions.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, ML; Xu, ZK; Shi, Y; Cai, F; Qiu, JQ; Yang, G; Hua, Z; Chen, T or concate me.. SDS of cas: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The Best Chemistry compound:(4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Li, JS; Xi, WX; Zhong, R; Yang, JG; Wang, L; Ding, HF; Wang, ZM or concate me.. Category: alcohols-buliding-blocks

An article HFIP-catalyzed direct dehydroxydifluoroalkylation of benzylic and allylic alcohols with difluoroenoxysilanes WOS:000613461100020 published article about FLUORINATED ALCOHOLS; SOLVENTS; ACCESS; BENZYLATION; ALLYLATION; REAGENTS; ETHERS in [Li, Jinshan; Xi, Wenxue; Zhong, Rong; Yang, Jianguo; Wang, Lei; Wang, Zhiming] Taizhou Univ, Adv Res Inst, 1139 Shifu Ave, Taizhou 318000, Peoples R China; [Li, Jinshan; Xi, Wenxue; Zhong, Rong; Yang, Jianguo; Wang, Lei; Wang, Zhiming] Taizhou Univ, Dept Chem, 1139 Shifu Ave, Taizhou 318000, Peoples R China; [Ding, Hanfeng] Zhejiang Univ, Dept Chem, Hangzhou 310058, Peoples R China in 2021, Cited 49. Category: alcohols-buliding-blocks. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Hexafluoroisopropanol (HFIP)-catalyzed direct dehydroxydifluoro-alkylation of benzylic and allylic alcohols with difluoroenoxysilanes is developed. This procedure enables the synthesis of a broad range of alpha,alpha-difluoroketones, a class of highly valuable intermediates and building blocks in medicinal and organic chemistry. Here, we have demonstrated for the first time that HFIP could act as a powerful catalyst for fluorinated carbon-carbon bond formation. The application of this protocol in late-stage dehydroxydifluoroalkylation of potentially bioactive drugs and natural products has also been carried out.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Li, JS; Xi, WX; Zhong, R; Yang, JG; Wang, L; Ding, HF; Wang, ZM or concate me.. Category: alcohols-buliding-blocks

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Downstream Synthetic Route Of (4-Methoxyphenyl)methanol

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kargar, H; Forootan, P; Fallah-Mehrjardi, M; Behjatmanesh-Ardakani, R; Rudbari, HA; Munawar, KS; Ashfaq, M; Tahir, MN or concate me.

An article Novel oxovanadium and dioxomolybdenum complexes of tridentate ONO-donor Schiff base ligand: Synthesis, characterization, crystal structures, Hirshfeld surface analysis, DFT computational studies and catalytic activity for the selective oxidation of benzylic alcohols WOS:000652819900001 published article about AEROBIC OXIDATION; CIS-DIOXOMOLYBDENUM(VI) COMPLEXES; MOLYBDENUM(VI) COMPLEX; HYDROGEN-PEROXIDE; MOLECULAR-OXYGEN; SC-XRD; EPOXIDATION; METAL; EFFICIENT; BENZALDEHYDE in [Kargar, Hadi] Ardakan Univ, Dept Chem Engn, Fac Engn, POB 184, Ardakan, Iran; [Forootan, Pooran; Fallah-Mehrjardi, Mehdi; Behjatmanesh-Ardakani, Reza] Payame Noor Univ, Dept Chem, Tehran 193953697, Iran; [Rudbari, Hadi Amiri] Univ Isfahan, Dept Chem, Esfahan 8174673441, Iran; [Munawar, Khurram Shahzad] Univ Sargodha, Dept Chem, Punjab, Pakistan; [Munawar, Khurram Shahzad] Univ Mianwali, Dept Chem, Mianwali, Pakistan; [Ashfaq, Muhammad; Tahir, Muhammad Nawaz] Univ Sargodha, Dept Phys, Punjab, Pakistan in 2021, Cited 98. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Formula: C8H10O2

Two new oxovanadium and dioxomolybdenum Schiff base complexes, [VvO(L)(OCH3)(CH3OH)] and [MoVIO2(L) (CH2CH3OH)], were synthesized by treating an ONO-donor type Schiff base ligand (H2L) derived by condensation of 5-nitrosalicylaldehyde and nicotinic hydrazide with oxo and dioxo acetylacetonate salts of vanadium and molybdenum, [VO(acac)2 and MoO2(acac)2], respectively. The synthesized ligand and complexes were characterized by various spectroscopic techniques like FT-IR, multinuclear (1H, 13C) NMR, elemental analysis and the most authentic single crystal X-ray diffraction analysis. In both complexes the geometry around the central metal ions was distorted octahedral as revealed by the data collected from diffraction studies. Theoretical calculation of the synthesized compounds were carried out by DFT as well as TD-DFT using B3LYP method by employing the Def2-TZVP basis set. The findings of theoretical data indicated that the calculated results are in accordance with the experimental findings. Moreover, the catalytic efficiencies of both complexes were investigated by oxidizing the benzylic alcohols in the presence of urea hydrogen peroxide (UHP) in acetonitrile.

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kargar, H; Forootan, P; Fallah-Mehrjardi, M; Behjatmanesh-Ardakani, R; Rudbari, HA; Munawar, KS; Ashfaq, M; Tahir, MN or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

A new application about(4-Methoxyphenyl)methanol

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Sung, K; Lee, MH; Cheong, YJ; Kim, YK; Yu, S; Jang, HY or concate me.

Application In Synthesis of (4-Methoxyphenyl)methanol. Authors Sung, K; Lee, MH; Cheong, YJ; Kim, YK; Yu, S; Jang, HY in WILEY-V C H VERLAG GMBH published article about in [Sung, Kihyuk; Lee, Mi-hyun; Cheong, Yeon-Joo; Kim, Yu Kwon; Yu, Sungju; Jang, Hye-Young] Ajou Univ, Dept Energy Syst Res, Suwon 16499, South Korea in 2021, Cited 56. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Multi N-heterocyclic carbene(NHC)-modified iridium catalysts were employed in the beta-alkylation of alcohols; dimerization of primary alcohols (Guerbet reaction), cross-coupling of secondary and primary alcohols, and intramolecular cyclization of alcohols. Mechanistic studies of Guerbet reaction, including kinetic experiments, mass analysis, and density functional theory (DFT) calculation, were employed to explain the fast reaction promoted by bimetallic catalysts, and the dramatic reactivity increase of monometallic catalysts at the late stage of the reaction.

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Sung, K; Lee, MH; Cheong, YJ; Kim, YK; Yu, S; Jang, HY or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What advice would you give a new faculty member or graduate student interested in a career 105-13-5

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Lan, XB; Ye, ZR; Yang, CH; Li, WK; Liu, JH; Huang, M; Liu, Y; Ke, ZF or concate me.. Safety of (4-Methoxyphenyl)methanol

Safety of (4-Methoxyphenyl)methanol. Recently I am researching about BORROWING HYDROGEN; ALPHA-ALKYLATION; AROMATIC-AMINES; BOND FORMATION; COMPLEXES; EFFICIENT; KETONES; STRATEGY; LIGANDS; IMINES, Saw an article supported by the NSFCNational Natural Science Foundation of China (NSFC) [21673301, 21973113, 21977019]; Guangdong Natural Science Funds for Distinguished Young Scholar [2015A030306027]; Tip-top Youth Talents of Guangdong Special Support Program [20153100042090537]; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities. Published in WILEY-V C H VERLAG GMBH in WEINHEIM ,Authors: Lan, XB; Ye, ZR; Yang, CH; Li, WK; Liu, JH; Huang, M; Liu, Y; Ke, ZF. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

The implementation of non-noble metals mediated chemistry is a major goal in homogeneous catalysis. Borrowing hydrogen/hydrogen autotransfer (BH/HA) reaction, as a straightforward and sustainable synthetic method, has attracted considerable attention in the development of non-noble metal catalysts. Herein, we report a tungsten-catalyzed N-alkylation reaction of anilines with primary alcohols via BH/HA. This phosphine-free W(phen)(CO)(4) (phen=1,10-phenthroline) system was demonstrated as a practical and easily accessible in-situ catalysis for a broad range of amines and alcohols (up to 49 examples, including 16 previously undisclosed products). Notably, this tungsten system can tolerate numerous functional groups, especially the challenging substrates with sterically hindered substituents, or heteroatoms. Mechanistic insights based on experimental and computational studies are also provided.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Lan, XB; Ye, ZR; Yang, CH; Li, WK; Liu, JH; Huang, M; Liu, Y; Ke, ZF or concate me.. Safety of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Never Underestimate The Influence Of 105-13-5

Computed Properties of C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Paul, A; Shipman, MA; Onabule, DY; Sproules, S; Symes, MD or concate me.

Authors Paul, A; Shipman, MA; Onabule, DY; Sproules, S; Symes, MD in ROYAL SOC CHEMISTRY published article about in [Paul, Avishek; Shipman, Michael A.; Onabule, Dolapo Y.; Sproules, Stephen; Symes, Mark D.] Univ Glasgow, Sch Chem, WestCHEM, Univ Ave, Glasgow G12 8QQ, Lanark, Scotland in 2021, Cited 30. Computed Properties of C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The enhancement of reactivity inside supramolecular coordination cages has many analogies to the mode of action of enzymes, and continues to inspire the design of new catalysts for a range of reactions. However, despite being a near-ubiquitous class of reactions in organic chemistry, enhancement of the reduction of carbonyls to their corresponding alcohols remains very much underexplored in supramolecular coordination cages. Herein, we show that encapsulation of small aromatic aldehydes inside a supramolecular coordination cage allows the reduction of these aldehydes with the mild reducing agent sodium cyanoborohydride to proceed with high selectivity (ketones and esters are not reduced) and in good yields. In the absence of the cage, low pH conditions are essential for any appreciable conversion of the aldehydes to the alcohols. In contrast, the specific microenvironment inside the cage allows this reaction to proceed in bulk solution that is pH-neutral, or even basic. We propose that the cage acts to stabilise the protonated oxocarbenium ion reaction intermediates (enhancing aldehyde reactivity) whilst simultaneously favouring the encapsulation and reduction of smaller aldehydes (which fit more easily inside the cage). Such dual action (enhancement of reactivity and size-selectivity) is reminiscent of the mode of operation of natural enzymes and highlights the tremendous promise of cage architectures as selective catalysts.

Computed Properties of C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Paul, A; Shipman, MA; Onabule, DY; Sproules, S; Symes, MD or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Search for chemical structures by a sketch :105-13-5

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kargar, PG; Bagherzade, G; Eshghi, H or concate me.

Quality Control of (4-Methoxyphenyl)methanol. I found the field of Chemistry very interesting. Saw the article Introduction of a trinuclear manganese(iii) catalyst on the surface of magnetic cellulose as an eco-benign, efficient and reusable novel heterogeneous catalyst for the multi-component synthesis of new derivatives of xanthene published in 2021, Reprint Addresses Bagherzade, G (corresponding author), Univ Birjand, Fac Sci, Dept Chem, Birjand 97175615, Iran.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol.

In this work, the new trinuclear manganese catalyst defined as Fe3O4@NFC@NNSM-Mn(iii) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, SEM, EDX, VSM, and ICP analysis. There have been reports of the use of magnetic catalysts for the synthesis of xanthine derivatives. The critical potential interest in the present method include short reaction time, high yields, recyclability of the catalyst, easy workup, and the ability to sustain a variety of functional groups, which give economical as well as ecological rewards. Also, the synthesized catalyst was used as a recyclable trinuclear catalyst in alcohol oxidation reactions at 40 degrees C. The magnetic catalyst activity of Fe3O4@NFC@NNSM-Mn(iii) could be attributed to the synergistic effects of the catalyst Fe3O4@NFC@NNS-Mn(iii) with melamine. Employing a sustainable and safe low temperature, using an eco-friendly solvent, no need to use any additive, and long-term stability and magnetic recyclability of the catalyst for at least six successive runs are the advantages of the current protocol towards green chemistry. This protocol is a benign, environmentally friendly method for heterocycle synthesis.

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kargar, PG; Bagherzade, G; Eshghi, H or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What I Wish Everyone Knew About 105-13-5

Recommanded Product: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kon, Y; Nakashima, T; Yada, A; Fujitani, T; Onozawa, SY; Kobayashi, S; Sato, K or concate me.

Authors Kon, Y; Nakashima, T; Yada, A; Fujitani, T; Onozawa, SY; Kobayashi, S; Sato, K in ROYAL SOC CHEMISTRY published article about in [Kon, Yoshihiro; Nakashima, Takuya; Yada, Akira; Fujitani, Tadahiro; Onozawa, Shun-ya; Kobayashi, Shu; Sato, Kazuhiko] Natl Inst Adv Ind Sci & Technol, Interdisciplinary Res Ctr Catalyt Chem, Tsukuba, Ibaraki 3058565, Japan; [Kobayashi, Shu] Univ Tokyo, Sch Sci, Dept Chem, Bunkyo Ku, Tokyo 1130033, Japan in 2021, Cited 41. Recommanded Product: 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The oxidation of alcohols to aldehydes is a powerful reaction pathway for obtaining valuable fine chemicals used in pharmaceuticals and biologically active compounds. Although many oxidants can oxidize alcohols, only a few hydrogen peroxide oxidations can be employed to continuously synthesize aldehydes in high yields using a liquid-liquid two-phase flow reactor, despite the possibility of the application toward a safe and rapid multi-step synthesis. We herein report the continuous flow synthesis of (E)-cinnamaldehyde from (E)-cinnamyl alcohol in 95%-98% yields with 99% selectivity for over 5 days by the selective oxidation of hydrogen peroxide using a catalyst column in which Pt is dispersed in SiO2. The active species for the developed selective oxidation is found to be zero-valent Pt(0) from the X-ray photoelectron spectroscopy measurements of the Pt surface before and after the oxidation. Using Pt black diluted with SiO2 as a catalyst to retain the Pt(0) species with the optimal substrate and H2O2 introduction rate not only enhances the catalytic activity but also maintains the activity during the flow reaction. Optimizing the contact time of the substrate with Pt and H2O2 using a flow reactor is important to proceed with the selective oxidation to prevent the catalytic H2O2 decomposition.

Recommanded Product: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kon, Y; Nakashima, T; Yada, A; Fujitani, T; Onozawa, SY; Kobayashi, S; Sato, K or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts