Extracurricular laboratory: Synthetic route of C8H10O2

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Shahriari, M; Sedigh, MA; Mahdavian, Y; Mahdigholizad, S; Pirhayati, M; Karmakar, B; Veisi, H or concate me.

An article In situ supported Pd NPs on biodegradable chitosan/agarose modified magnetic nanoparticles as an effective catalyst for the ultrasound assisted oxidation of alcohols and activities against human breast cancer WOS:000619184100006 published article about FREE AEROBIC OXIDATION; PALLADIUM NANOPARTICLES; BENZYL ALCOHOL; RECYCLABLE NANOCATALYST; SELECTIVE OXIDATION; MOLECULAR-OXYGEN; EFFICIENT; GREEN; ANTIBACTERIAL; ANTIOXIDANT in [Shahriari, Marjan] Islamic Azad Univ, Fac Pharmaceut Chem, Dept Pharmaceut Chem, Tehran Med Sci, Tehran, Iran; [Sedigh, Mohammad Alihosseini] Islamic Azad Univ, Fac Pharmaceut Chem, Dept Organ Chem, Tehran Med Sci, Tehran, Iran; [Mahdavian, Yasamin] Islamic Azad Univ, Fac Pharmaceut Chem, Dept Appl Chem, Tehran Med Sci, Tehran, Iran; [Mahdigholizad, Siavash] Iran Univ Med Sci, Sch Med, Tehran, Iran; [Pirhayati, Mozhgan] Malayer Univ, Fac Sci, Dept Appl Chem, Malayer, Iran; [Karmakar, Bikash] Gobardanga Hindu Coll, Dept Chem, Gobardanga, India; [Veisi, Hojat] Payame Noor Univ, Dept Chem, Tehran, Iran in 2021, Cited 57. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. HPLC of Formula: C8H10O2

In this content, a green approach for the ultrasound promoted in situ immobilization of Pd NPs over biodegradable chitosan/agarose modified ferrite NP (Fe3O4@CS-Agarose/Pd) is developed. The structural and physicochemical features of the material were estimated using advanced analytical techniques like FT-IR, ICP-OES, FESEM, EDS, XRD, TEM and VSM. The magnetic material was catalytically explored in the oxidation of alcohols under ultrasonic waves. Sonication had a significant role in enhancing the catalytic performance in the alcohol’s oxidation as compared to conventional heating. The heterogeneous nanocatalyst was efficiently recycled up to 10 times with nominal loss in catalytic activity. Towards the biological applications, the Fe3O4@CS-Agarose/Pd nanocomposite showed high antioxidant activities against DPPH free radicals, comparable to standard butylated hydroxytoluene (BHT). In addition, it exhibited excellent cytotoxicity in terms of % cell viability against breast adenocarcinoma (MCF7), breast carcinoma (Hs 578Bst), infiltrating ductal cell carcinoma (Hs 319.T), and metastatic carcinoma (MDA-MB-453) cell lines. The best anti-breast cancer potential of the nanocomposite was observed in Hs 319.T cell line. (C) 2021 Published by Elsevier B.V.

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Shahriari, M; Sedigh, MA; Mahdavian, Y; Mahdigholizad, S; Pirhayati, M; Karmakar, B; Veisi, H or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemical Properties and Facts of 105-13-5

Recommanded Product: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kobayashi, F; Fujita, M; Ide, T; Ito, Y; Yamashita, K; Egami, H; Hamashima, Y or concate me.

In 2021 ACS CATAL published article about PHOTOREDOX CATALYSIS; BOND FUNCTIONALIZATION; ACTIVATION; STRATEGY; TETRAHYDROISOQUINOLINES; ORGANOCATALYSIS; ALKYLATION; PHOTOLYSIS; CYANATION; RADICALS in [Kobayashi, Fumihisa; Fujita, Masashi; Ide, Takafumi; Ito, Yuta; Yamashita, Kenji; Egami, Hiromichi; Hamashima, Yoshitaka] Univ Shizuoka, Sch Pharmaceut Sci, Suruga Ku, Shizuoka 4228526, Japan in 2021, Cited 70. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Recommanded Product: (4-Methoxyphenyl)methanol

Thiobenzoic acid (TBA) can serve as a single-electron reducing agent under photoirradiation from a blue light-emitting diode, in the presence of appropriate electron acceptors, and the resulting sulfur-centered radical species undergoes hydrogen atom abstraction. This dual-role catalysis by TBA enables regioselectivie C alpha-H arylation of benzylamines, benzyl alcohols, and ethers, as well as dihydroimidazoles, with cyano(hetero)arenes in good yield, without the need for a transition-metal photocatalyst and/or synthetically elaborated organic dyes.

Recommanded Product: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kobayashi, F; Fujita, M; Ide, T; Ito, Y; Yamashita, K; Egami, H; Hamashima, Y or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Awesome Chemistry Experiments For (4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kalita, T; Dev, D; Mondal, S; Giri, RS; Mandal, B or concate me.. HPLC of Formula: C8H10O2

An article Ethyl-2-Cyano-2-(2-Nitrophenylsulfonyloximino)Acetate (ortho-NosylOXY) Mediated One-Pot Racemization Free Synthesis of Ureas, Carbamates, and Thiocarbamates via Curtius Rearrangement WOS:000652287600001 published article about SOLID-PHASE SYNTHESES; ETHYL 2-CYANO-2-(2-NITROBENZENESULFONYLOXYIMINO)ACETATE; UNSYMMETRICAL UREAS; INHIBITORS; PEPTIDE; REAGENT; DESIGN; KINASE; ACIDS in [Kalita, Tapasi; Dev, Dharm; Mondal, Sandip; Giri, Rajat Subhra; Mandal, Bhubaneswar] Indian Inst Technol Guwahati, Dept Chem, Gauhati 781039, Assam, India in 2021, Cited 39. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. HPLC of Formula: C8H10O2

Direct conversion of carboxylic acids to ureas, carbamates, and thiocarbamates in a single pot via Curtius rearrangement is accomplished. One recently established coupling reagent, Ethyl-2-cyano-2-(2-nitrophenylsulfonyloximino)acetate (ortho-NosylOXY, I), is successfully used for the racemization free synthesis of ureas, di-peptidyl ureas, and carbamates with moderate to good yield (82-69%). This single-pot hassle-free procedure works with a diverse range of N-protecting groups Fmoc, Boc, and Cbz. Various amine, including aromatic, methyl esters of amino acids, t-butylamine, alcohols, and thiols, are used as nucleophiles. A detailed NMR-based mechanism study is incorporated here. Racemization suppression, easy removal of by-products, and less waste generation make this methodology useful.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kalita, T; Dev, D; Mondal, S; Giri, RS; Mandal, B or concate me.. HPLC of Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

An update on the compound challenge: C8H10O2

Recommanded Product: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wu, SP; Zhang, H; Cao, QE; Zhao, QH; Fang, WH or concate me.

Recommanded Product: 105-13-5. Authors Wu, SP; Zhang, H; Cao, QE; Zhao, QH; Fang, WH in ROYAL SOC CHEMISTRY published article about in [Wu, Shipeng; Zhang, Hao; Cao, Qiue; Zhao, Qihua; Fang, Wenhao] Yunnan Univ, Sch Chem Sci & Technol, Key Lab Med Chem Nat Resource, Minist Educ,Funct Mol Anal & Biotransformat Key L, 2 North Cuihu Rd, Kunming 650091, Yunnan, Peoples R China; [Cao, Qiue; Fang, Wenhao] Yunnan Univ, Natl Demonstrat Ctr Expt Chem & Chem Engn Educ, Kunming 650091, Yunnan, Peoples R China in 2021, Cited 46. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Direct oxidative coupling of alcohols with amines using a non-precious metal oxide catalyst under mild conditions is highly desirable for imine synthesis. In this work, a mesoporous Mn1ZrxOy solid solution catalyst prepared by a co-precipitation method showed excellent catalytic performance in imine synthesis from primary alcohols and amines without base additives in an air atmosphere. XRD, N-2 physisorption, H-2-TPR, O-2-TPD, EPR and XPS were comprehensively used to unravel its structural, redox and amphoteric properties that closely depended on the interaction between MnOy and ZrO2 with a variable Zr ratio. The Mn1Zr0.5Oy catalyst presented the highest fractions of Mn3+ ions and reactive oxygen species on the surface, and the highest concentrations of acidic-basic sites, which were disclosed to play important roles in activating alcohols and molecular O-2 in the rate-determining step. In the model reaction of oxidative coupling of benzyl alcohol with aniline, such enhanced features of the Mn1Zr0.5Oy catalyst can promote the intrinsic catalytic activity (iTOF of 1.87 h(-1)) and boost benzylideneaniline formation (5.56 mmol g(cat).(-1) h(-1)) based on a >99% yield at 80 degrees C respectively at a fast response. It can also work effectively at a room temperature of 30 degrees C, as well as for the gram-grade synthesis. This is one of the best results among all the MnOy-based catalysts in the literature. Moreover, this catalyst showed good stability and a wide substrate scope with good to excellent yields of imines.

Recommanded Product: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wu, SP; Zhang, H; Cao, QE; Zhao, QH; Fang, WH or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What advice would you give a new faculty member or graduate student interested in a career (4-Methoxyphenyl)methanol

Recommanded Product: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kon, Y; Nakashima, T; Yada, A; Fujitani, T; Onozawa, SY; Kobayashi, S; Sato, K or concate me.

Recommanded Product: (4-Methoxyphenyl)methanol. Authors Kon, Y; Nakashima, T; Yada, A; Fujitani, T; Onozawa, SY; Kobayashi, S; Sato, K in ROYAL SOC CHEMISTRY published article about in [Kon, Yoshihiro; Nakashima, Takuya; Yada, Akira; Fujitani, Tadahiro; Onozawa, Shun-ya; Kobayashi, Shu; Sato, Kazuhiko] Natl Inst Adv Ind Sci & Technol, Interdisciplinary Res Ctr Catalyt Chem, Tsukuba, Ibaraki 3058565, Japan; [Kobayashi, Shu] Univ Tokyo, Sch Sci, Dept Chem, Bunkyo Ku, Tokyo 1130033, Japan in 2021, Cited 41. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The oxidation of alcohols to aldehydes is a powerful reaction pathway for obtaining valuable fine chemicals used in pharmaceuticals and biologically active compounds. Although many oxidants can oxidize alcohols, only a few hydrogen peroxide oxidations can be employed to continuously synthesize aldehydes in high yields using a liquid-liquid two-phase flow reactor, despite the possibility of the application toward a safe and rapid multi-step synthesis. We herein report the continuous flow synthesis of (E)-cinnamaldehyde from (E)-cinnamyl alcohol in 95%-98% yields with 99% selectivity for over 5 days by the selective oxidation of hydrogen peroxide using a catalyst column in which Pt is dispersed in SiO2. The active species for the developed selective oxidation is found to be zero-valent Pt(0) from the X-ray photoelectron spectroscopy measurements of the Pt surface before and after the oxidation. Using Pt black diluted with SiO2 as a catalyst to retain the Pt(0) species with the optimal substrate and H2O2 introduction rate not only enhances the catalytic activity but also maintains the activity during the flow reaction. Optimizing the contact time of the substrate with Pt and H2O2 using a flow reactor is important to proceed with the selective oxidation to prevent the catalytic H2O2 decomposition.

Recommanded Product: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kon, Y; Nakashima, T; Yada, A; Fujitani, T; Onozawa, SY; Kobayashi, S; Sato, K or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Final Thoughts on Chemistry for (4-Methoxyphenyl)methanol

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Ghosh, R; Jana, NC; Panda, S; Bagh, B or concate me.

SDS of cas: 105-13-5. Authors Ghosh, R; Jana, NC; Panda, S; Bagh, B in AMER CHEMICAL SOC published article about in [Ghosh, Rahul; Jana, Narayan Ch; Panda, Surajit; Bagh, Bidraha] HBNI, Natl Inst Sci Educ & Res NISER, Sch Chem Sci, Bhubaneswar 752050, Odisha, India in 2021, Cited 111. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Coordination of 1,4-disubstituted 1,2,3-triazoles L-1 and L-2 with [(p-cymene)RuCl2](2) followed by dehydrochlorination in the presence of a base resulted in the formation of complexes 1 and 2, respectively. Both were tested for the transfer hydrogenation of aldehydes and ketones in air using ecologically benign and cheap ethanol as the hydrogen source in the presence of a catalytic amount of a base. Air-stable complex 1 was proved to be an active catalyst for the transfer hydrogenation of a wide variety of aromatic and aliphatic aldehydes and ketones bearing various functionalities. Catalyst 1 was also effective for the transfer hydrogenation of carbonyls using the simplest primary alcohol, methanol, under aerobic conditions. Under the present catalytic protocol, labile or reducible functionalities such as nitro, cyano, and ester groups were tolerated. Good selectivity was also observed for acyclic alpha,beta-unsaturated carbonyls. However, this catalytic protocol was not selective for 2-cyclohexen-1-one as both alkene and keto moieties were reduced. The transfer hydrogenations are believed to proceed via a ruthenium-hydride intermediate. Finally, transfer hydrogenation of acetophenone using isopropanol as a commonly used hydrogen source was also performed and the sustainable and green credentials of these catalytic protocols utilizing methanol, ethanol, and isopropanol were compared with the help of the CHEM21 green metrics toolkit.

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Ghosh, R; Jana, NC; Panda, S; Bagh, B or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Can You Really Do Chemisty Experiments About C8H10O2

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Correia, LMM; Soliman, MMA; Granadeiro, CM; Balula, SS; Martins, LMDRS; Pombeiro, AJL; Alegria, ECBA or concate me.

SDS of cas: 105-13-5. Recently I am researching about CYCLOHEXANE OXIDATION; SELECTIVE OXIDATION; HYDROGEN-PEROXIDE; AEROBIC OXIDATION; HIGHLY EFFICIENT; METAL-COMPLEXES; II COMPLEX; SOLVENT; SILICA; DESULFURIZATION, Saw an article supported by the Fundacao para a Ciencia e a Tecnologia (FCT), Portugal (Centro de Quimica Estrutural) [UIDB/00100/2020]; Fundacao para a Ciencia e a Tecnologia (FCT), PortugalPortuguese Foundation for Science and Technology [PTDC/QUI-QIN/29778/2017]; REQUIMTE-LAQV (FCT) [POCI-01-0145-FEDER-007265, UID/QUI/50006/2013]; FCT/MEC [GlyGold PTDC/CTM-CTM/31983/2017]; Fundo Europeu de Desenvolvimento Regional (FEDER) under the PT2020 Partnership Agreement; national funds (OE), through FCT-Fundacao para a Ciencia e a Tecnologia, I.P.. Published in ELSEVIER in AMSTERDAM ,Authors: Correia, LMM; Soliman, MMA; Granadeiro, CM; Balula, SS; Martins, LMDRS; Pombeiro, AJL; Alegria, ECBA. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

The neutral trichloro[hydrotris(1-pyrazolyl)methane]vanadium(III) [VCl3(Tpm)] (Tpm = HC(pz)(3); pz = pyrazolyl) C-scorpionate complex was immobilized on amine-functionalized mesoporous silica (aptesSBA-15) via an impregnation method forming the [VCl3(Tpm)]@aptesSBA-15 composite. The immobilization of the vanadium compound was confirmed by several characterization techniques, namely SEM/EDS, powder XRD, FT-IR/ATR, ICP and BET surface area analysis, revealing the successful incorporation of the complex, and confirming the structural and morphological preservation of the porous support and the vanadium complex. The vanadium composite was tested as heterogeneous catalyst for the peroxidative oxidation of benzyl alcohol under mild conditions and its catalytic performance was compared to that of the analogous homogeneous [VCl3(Tpm)] complex. The catalytic studies were extended to other substrates. The effect of various parameters, such as amount and type of oxidant, catalyst and additives, temperature and reaction time were investigated allowing to reach overall yields of ca. 60% and turnover numbers (TONs) up to ca. 7.6 x 10(3). The results obtained demonstrated the higher performance of the heterogeneous catalyst using much less [VCl3(Tpm)] complex under a solvent-free system. Furthermore, consecutive reaction cycles could be performed, showing its recycling capacity. Structural stability was also investigated, indicating the viability of the vanadium C-scorpionate composite as catalyst for other oxidative reactions with high industrial interest.

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Correia, LMM; Soliman, MMA; Granadeiro, CM; Balula, SS; Martins, LMDRS; Pombeiro, AJL; Alegria, ECBA or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Why do aromatic interactions matter of compound:(4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wu, JJ; Darcel, C or concate me.. HPLC of Formula: C8H10O2

An article Iron-Catalyzed Hydrogen Transfer Reduction of Nitroarenes with Alcohols: Synthesis of Imines and Aza Heterocycles WOS:000606840200084 published article about ONE-POT SYNTHESIS; BORROWING HYDROGEN; 2-SUBSTITUTED BENZIMIDAZOLES; TRANSITION-METAL; N-ALKYLATION; SELECTIVE HYDROGENATION; CHEMOSELECTIVE HYDROGENATION; QUINOXALINE DERIVATIVES; SWITCHABLE SYNTHESIS; AROMATIC DIAMINES in [Wu, Jiajun; Darcel, Christophe] Univ Rennes, CNRS ISCR, Inst Sci Chim Rennes, UMR 6226, F-35000 Rennes, France in 2021, Cited 137. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. HPLC of Formula: C8H10O2

A straightforward and selective reduction of nitroarenes with various alcohols was efficiently developed using an iron catalyst via a hydrogen transfer methodology. This protocol led specifically to imines in 30-91% yields, with a good functional group tolerance. Noticeably, starting from o-nitroaniline derivatives, in the presence of alcohols, benzimidazoles can be obtained in 64-72% yields when the reaction was performed with an additional oxidant, DDQ, and quinoxalines were prepared from 1,2-diols in 28-96% yields. This methodology, unprecedented at iron for imines, also provides a sustainable alternative for the preparation of quinoxalines and benzimidazoles.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wu, JJ; Darcel, C or concate me.. HPLC of Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Awesome and Easy Science Experiments about C8H10O2

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Aydin, BO; Anil, D; Demir, Y or concate me.. Name: (4-Methoxyphenyl)methanol

Name: (4-Methoxyphenyl)methanol. Authors Aydin, BO; Anil, D; Demir, Y in WILEY-V C H VERLAG GMBH published article about in [Aydin, Busra O.; Anil, Derya] Ataturk Univ, Dept Chem, Fac Sci, Erzurum, Turkey; [Anil, Derya] Ataturk Univ, Tech Sci Vocat Sch, Dept Chem & Chem Proc Technol, Erzurum, Turkey; [Demir, Yeliz] Ardahan Univ, Nihat Delibalta Gole Vocat Sch, Dept Pharm Serv, Ardahan, Turkey in 2021, Cited 53. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Fused pyrimidines, especially pyrazolo[3,4-d]pyrimidines, are among the most preferred building blocks for pharmacology studies, as they exhibit a broad spectrum of biological activity. In this study, new derivatives of pyrazolo[3,4-d]pyrimidine were synthesized by alkylation of the N1 nitrogen atom. We synthesized 3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine 2 from commercially available aminopyrazolopyrimidine 1 using N-iodosuccinimide as an iodinating agent. The synthesis of compound 2 started with nucleophilic substitution of 3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine with R-X (X: -OMs, -Br, -Cl), affording N-alkylated pyrazolo[3,4-d]pyrimidine. We performed this synthesis using a weak inorganic base and the mild temperature was also used for a two-step procedure to generate N-alkylated pyrazolo[3,4-d]pyrimidine derivatives. Also, all compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and the human carbonic anhydrase (hCA) isoforms I and II, with K-i values in the range of 15.41 +/- 1.39-63.03 +/- 10.68 nM for AChE, 17.68 +/- 1.92-66.27 +/- 5.43 nM for hCA I, and 8.41 +/- 2.03-28.60 +/- 7.32 nM for hCA II. Notably, compound 10 was the most selective and potent CA I inhibitor with a significant selectivity ratio of 26.90.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Aydin, BO; Anil, D; Demir, Y or concate me.. Name: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The important role of C8H10O2

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Zhang, YY; Liu, Q; Zhang, LY; Bao, YM; Tan, JY; Zhang, N; Zhang, JY; Liu, ZJ or concate me.

Quality Control of (4-Methoxyphenyl)methanol. Authors Zhang, YY; Liu, Q; Zhang, LY; Bao, YM; Tan, JY; Zhang, N; Zhang, JY; Liu, ZJ in ROYAL SOC CHEMISTRY published article about in [Zhang, Ying-Ying] Zhongyuan Univ Technol, Ctr Adv Mat Res, Zhengzhou 450007, Peoples R China; [Liu, Qing; Zhang, Lin-Yan; Bao, Yu-Mei; Tan, Jing-Yi; Zhang, Na; Zhang, Jian-Yong; Liu, Zhen-Jiang] Shanghai Inst Technol, Shanghai 201418, Peoples R China in 2021, Cited 82. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Three new Ni-II/Co-II-metal organic frameworks were self-assembled by the reaction of C-3 symmetric 1,3,5-tribenzoic acid (H3BTC) and 2,4,6-tris(4-pyridyl)-1,3,5-triazine (4-TPT) ligands and Ni-II/Co-II salts under solvothermal conditions. Isomorphous MOF1 and MOF2 exhibit a 3D pillar-layer framework based on binuclear M-2(OH)(COO)(2) units connected by tritopic BTC3- and 4-TPT ligands with a novel (3,5)-connected topology net. MOF3 displays a 3-fold interpenetrated 3D network exhibiting a (3,4)-connected topology net. The porous MOF3 can reversibly take up I-2. The activated MOFs contain both Lewis acid (Ni-II center) and basic (uncoordinated pyridyl or carboxylic groups) sites, and act as bifunctional acid-base catalysts. The catalytic measurements demonstrate that the activated MOF3 exhibits good activities for benzyl alcohol oxidation and the Knoevenagel reaction and can be recycled and reused for at least four cycles without losing its structural integrity and high catalytic activity. Thus, the catalytic properties for the oxidation-Knoevenagel cascade reaction have also been studied.

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Zhang, YY; Liu, Q; Zhang, LY; Bao, YM; Tan, JY; Zhang, N; Zhang, JY; Liu, ZJ or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts