Zhang, Xiao-Kun et al. published their research in Nanoscale in 2021 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Computed Properties of C37H74NO8P

Development of site-specific antibody-conjugated immunoliposomes for sensitive detection of disease biomarkers was written by Zhang, Xiao-Kun;Yang, Hong-Ming;Li, Meng-Ran;Gao, Xiao-Yi;Sun, Xiao-Wei;Sun, Xi-Feng;Tang, Jin-Bao. And the article was included in Nanoscale in 2021.Computed Properties of C37H74NO8P The following contents are mentioned in the article:

Liposome-based immunoassay (LIA) is an attractive protocol for amplifying the detection signals because of the excellent ability of liposomes to encapsulate signal marker compounds The antigen-binding activity of the conjugated antibodies on the liposomal surface is crucial for the specificity and sensitivity of LIA. We present here a general platform to ensure that antibodies can conjugate onto the surface of liposomes in a site-specific and oriented manner. A His-handle-modified antibody with Fc region-specific and covalent conjugation was first fabricated using a photoactivatable ZBpa-His tag that was engineered using the aminoacyl-tRNA synthetase/suppressor tRNA technique. Based on the high affinity between the His tag and divalent metal ions, the novel His-modified antibody was oriented onto the surface of nickel ion-modified liposomes encapsulating horseradish peroxidase. With the prostate-specific antigen as a model, the detection efficiency of the new immunoliposomes was evaluated by chemiluminescence immunoassay. The immunoliposomes exhibited a limit of detection of 0.2 pg mL-1, which was a six time improvement compared with that of the chem.-coupled antibody-liposome conjugates. Thus, the proposed immunoliposomes are expected to hold potential applications for the sensitive detection of various biomarkers in complicated serum samples. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5Computed Properties of C37H74NO8P).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Computed Properties of C37H74NO8P

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Pandolfi, Laura et al. published their research in Molecules in 2019 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Related Products of 923-61-5

Hyaluronic acid-decorated liposomes as innovative targeted delivery system for lung fibrotic cells was written by Pandolfi, Laura;Frangipane, Vanessa;Bocca, Claudia;Marengo, Alessandro;Genta, Erika Tarro;Bozzini, Sara;Morosini, Monica;D’Amato, Maura;Vitulo, Simone;Monti, Manuela;Comolli, Giuditta;Scupoli, Maria Teresa;Fattal, Elias;Arpicco, Silvia;Meloni, Federica. And the article was included in Molecules in 2019.Related Products of 923-61-5 The following contents are mentioned in the article:

Collagen Tissue Disease-associated Interstitial Lung Fibrosis (CTD-ILDs) and Bronchiolitis Obliterans Syndrome (BOS) represent severe lung fibrogenic disorders, characterized by fibro-proliferation with uncontrolled extracellular matrix deposition. Hyaluronic acid (HA) plays a key role in fibrosis with its specific receptor, CD44, overexpressed by CTD-ILD and BOS cells. The aim is to use HA-liposomes to develop an inhalatory treatment for these diseases. Liposomes with HA of two mol. weights were prepared and characterized. Targeting efficiency was assessed toward CTD-ILD and BOS cells by flow cytometry and confocal microscopy and immune modulation by RT-PCR and ELISA techniques. HA-liposomes were internalized by CTD-ILD and BOS cells expressing CD44, and this effect increased with higher HA MW. In THP-1 cells, HA-liposomes decreased pro-inflammatory cytokines IL-1β, IL-12, and anti-fibrotic VEGF transcripts but increased TGF-β mRNA. However, upon analyzing TGF-β release from healthy donors-derived monocytes, we found liposomes did not alter the release of active pro-fibrotic cytokine. All liposomes induced mild activation of neutrophils regardless of the presence of HA. HA liposomes could be also applied for lung fibrotic diseases, being endowed with low pro-inflammatory activity, and results confirmed that higher MW HA are associated to an increased targeting efficiency for CD44 expressing LFs-derived from BOS and CTD-ILD patients. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5Related Products of 923-61-5).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Related Products of 923-61-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Pandolfi, Laura et al. published their research in International Journal of Molecular Sciences in 2021 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application In Synthesis of (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate

Liposomes Loaded with Everolimus and Coated with Hyaluronic Acid: A Promising Approach for Lung Fibrosis was written by Pandolfi, Laura;Marengo, Alessandro;Japiassu, Kamila Bohne;Frangipane, Vanessa;Tsapis, Nicolas;Bincoletto, Valeria;Codullo, Veronica;Bozzini, Sara;Morosini, Monica;Lettieri, Sara;Vertui, Valentina;Piloni, Davide;Arpicco, Silvia;Fattal, Elias;Meloni, Federica. And the article was included in International Journal of Molecular Sciences in 2021.Application In Synthesis of (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate The following contents are mentioned in the article:

Chronic lung allograft dysfunction (CLAD) and interstitial lung disease associated with collagen tissue diseases (CTD-ILD) are two end-stage lung disorders in which different chronic triggers induce activation of myo-/fibroblasts (LFs). Everolimus, an mTOR inhibitor, can be adopted as a potential strategy for CLAD and CTD-ILD, however it exerts important side effects. This study aims to exploit nanomedicine to reduce everolimus side effects encapsulating it inside liposomes targeted against LFs, expressing a high rate of CD44. PEGylated liposomes were modified with high mol. weight hyaluronic acid and loaded with everolimus (PEG-LIP(ev)-HA400kDa). Liposomes were tested by in vitro experiments using LFs derived from broncholveolar lavage (BAL) of patients affected by CLAD and CTD-ILD, and on alveolar macrophages (AM) and lymphocytes isolated, resp., from BAL and peripheral blood. PEG-LIP-HA400kDa demonstrated to be specific for LFs, but not for CD44-neg. cells, and after loading everolimus, PEG-LIP(ev)-HA400kDa were able to arrest cell cycle arrest and to decrease phospho-mTOR level. PEG-LIP(ev)-HA400kDa showed anti-inflammatory effect on immune cells. This study opens the possibility to use everolimus in lung fibrotic diseases, demonstrating that our lipids-based vehicles can vehicle everolimus inside cells exerting the same drug mol. effect, not only in LFs, but also in immune cells. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5Application In Synthesis of (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application In Synthesis of (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ferhan, Abdul Rahim et al. published their research in Nature Protocols in 2019 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Category: alcohols-buliding-blocks

Solvent-assisted preparation of supported lipid bilayers was written by Ferhan, Abdul Rahim;Yoon, Bo Kyeong;Park, Soohyun;Sut, Tun Naw;Chin, Hokyun;Park, Jae Hyeon;Jackman, Joshua A.;Cho, Nam-Joon. And the article was included in Nature Protocols in 2019.Category: alcohols-buliding-blocks The following contents are mentioned in the article:

The supported lipid bilayer (SLB) platform is a popular cell membrane mimic that is utilized in the chem., biol., materials science, and medical fields. To date, SLB preparation has proven challenging because of the need for specialized fabrication equipment, domain-specific knowledge about topics relevant to lipid self-assembly, and extensive training in the interfacial science field. Existing methods, such as vesicle fusion, also work with only a narrow range of lipid compositions and material supports. Here, we describe a recently developed simple and versatile protocol to form SLBs. The protocol is simple because it requires minimal sample preparation and only basic microfluidics, making it tech. accessible to researchers across different scientific disciplines. The protocol is versatile because it works on a wide range of material supports, such as silicon oxide, gold, and graphene, and is compatible with diverse lipid compositions, including sterols and signaling lipids. The main stages of the procedure involve dissolving a lipid sample in an organic solvent, depositing the lipid solution on a solid support, and replacing the organic solvent with aqueous buffer. In addition, we provide procedures for characterizing the quality of the prepared SLBs and present examples of biofunctionalization procedures. The protocol takes 1-2 h and is broadly useful in various application contexts, including clin. diagnostics, biosensing, and cellular interfaces. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5Category: alcohols-buliding-blocks).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kono, Yusuke et al. published their research in Biological & Pharmaceutical Bulletin in 2020 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Quality Control of (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate

Surface modification of liposomes using IR700 enables efficient controlled contents release triggered by near-IR light was written by Kono, Yusuke;Yokoyama, Kazuha;Suzuki, Motofumi;Takakura, Hideo;Ogawa, Mikako. And the article was included in Biological & Pharmaceutical Bulletin in 2020.Quality Control of (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate The following contents are mentioned in the article:

Stimuli-responsive liposomes are promising drug carriers for cancer treatment because they enable controlled drug release and the maintenance of desired drug concentrations in tumor tissue. In particular, near-IR (NIR) light is a useful stimulus for triggering drug release from liposomes based on its advantages such as deep tissue penetration and safety. Previously, we found that a silicon phthalocyanine derivative, IR700, conjugated to antibodies, can induce the rupture of the cell membrane following irradiation by NIR light. Based on this finding, we constructed IR700-modified liposomes (IR700 liposomes) and evaluated their drug release properties triggered by NIR light. Drug release was substantially suppressed by the addition of sodium azide, suggesting that liposomal membrane permeabilization was mediated by singlet oxygen generated from IR700. Thus, membrane disruption should be induced by the phys. change of IR700 from highly hydrophilic to hydrophobic as we previously described, although singlet oxygen can cause a certain level of membrane disruption under normoxia. We also observed that doxorubicin-encapsulated IR700 liposomes exhibited significant cytotoxic effects against CT-26 murine colon carcinoma cells following NIR light exposure. These results indicate that IR700 liposomes can efficiently release anti-cancer drugs following NIR light irradiation even under hypoxic conditions and, therefore, they would be useful for cancer treatment. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5Quality Control of (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Quality Control of (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Huang, Shih-Ting et al. published their research in International Journal of Oncology in 2018 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Electric Literature of C37H74NO8P

Liposomal paclitaxel induces fewer hematopoietic and cardiovascular complications than bioequivalent doses of Taxol was written by Huang, Shih-Ting;Wang, Yi-Ping;Chen, Yen-Hui;Lin, Chin-Tarng;Li, Wen-Shan;Wu, Han-Chung. And the article was included in International Journal of Oncology in 2018.Electric Literature of C37H74NO8P The following contents are mentioned in the article:

Paclitaxel (PTX) exhibits potent antineoplastic activity against various human malignancies; however, clin. application must overcome the inherent hydrophobicity of this mol. The commercialized Taxol formulation utilizes Cremophor EL (CrEL)/ethanol as a solvent to stabilize and dispense PTX in an aqueous solution However, adverse CrEL-induced hypersensitivity reactions have been reported in ∼30% of recipients, and 40% of patients receiving premedication may also experience this adverse effect. Therefore, the development of a CrEL-free delivery system is crucial, in order to fully exploit the therapeutic efficacy of PTX. In the present study, a novel liposomal PTX (lipo-PTX) formulation was optimized with regards to encapsulation rate and long-term stability, arriving at a molar constituent ratio of soybean phosp hatidylcholine:cholesterol:N-(carbonyl-methoxy-poly-ethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt:PTX at 95:2:1:2. Comparable doses of lipo-PTX and Taxol were bioequivalent in terms of therapeutic efficacy in xenograft tumor models. However, the systemic side effects, including hematopoietic toxicity, acute hypersensitivity reactions and cardiac irregularities, were significantly reduced in lipo-PTX-treated mice compared with those infused with reference formulations of PTX. In conclusion, the present study reported that lipo-PTX exhibited a higher therapeutic index than clin. PTX formulations. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5Electric Literature of C37H74NO8P).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Electric Literature of C37H74NO8P

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Noiri, Makoto et al. published their research in ACS Applied Bio Materials in 2021 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.COA of Formula: C37H74NO8P

Exogenous Cell Surface Modification with Cell Penetrating Peptide-Conjugated Lipids Causes Spontaneous Cell Adhesion was written by Noiri, Makoto;Goto, Yuya;Sato, Yuya;Nakamura, Naoko;Ishihara, Kazuhiko;Teramura, Yuji. And the article was included in ACS Applied Bio Materials in 2021.COA of Formula: C37H74NO8P The following contents are mentioned in the article:

The technique of cell patterning on a substrate is of great importance for platforms in cell-based assays. Chem. treatment of the substrate is commonly performed for cell patterning using cationic polymers, extracellular matrixes, and antibodies. However, cell patterning could be easier if there is an approach to immobilize cells without treating the substrate surface. We previously reported that cell adhesion could be induced by the modification of the cellular surface with a cell-penetrating peptide (CPP)-conjugated poly(ethylene glycol)-phospholipid (CPP-PEG-lipid). This approach does not require chem. modification of the substrate surface, such as polystyrene or glass, and can be used for the cell patterning of floating cells. Here, we aimed to study the mechanism of induced cell adhesion using a representative CPP, Tat peptide (Tat-PEG-lipid). We found that cell adhesion was induced via electrostatic interactions between the Tat peptide and the substrate surface, which could be induced more efficiently by increasing the mol. weight of PEG together with CPPs but not with cationic peptides. The excluded volume effect between neighboring PEG chains could stretch the cell shape better than PEG with lower mol. weight, allowing the cell to spread firmly. In addition, Tat-PEG-lipid did not activate actin filament formation and did not influence the expression of focal adhesion kinase. Thus, the induced cell adhesion by CPP-PEG-lipid did not affect internal cell signaling. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5COA of Formula: C37H74NO8P).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.COA of Formula: C37H74NO8P

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yu, Yalun et al. published their research in Journal of Chemical Physics in 2018 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Product Details of 923-61-5

Modeling Pseudomonas aeruginosa inner plasma membrane in planktonic and biofilm modes was written by Yu, Yalun;Klauda, Jeffery B.. And the article was included in Journal of Chemical Physics in 2018.Product Details of 923-61-5 The following contents are mentioned in the article:

Pseudomonas aeruginosa changes its growth modes under different conditions. The bacteria in biofilm is more resistant to environmental stress compared to the planktonic mode of growth. The compositions of the inner plasma membrane for the two modes are noticeably different. Major lipid types are chosen from experiment to model the membrane in both modes of growth, and mol. dynamics simulation is used to study the properties of the membrane. The CHARMM36 lipid force field is used and tested against several exptl. results. Our models include lipids containing cyclopropane in the middle of the sn-2 tail, namely, 1-palmitoyl-2-cis-11,12-methylene-stearic-acid-sn-glycero-3-phosphoethanolamine and 1-palmitoyl-2-cis-11,12-methylene-stearic-acid-sn-glycero-3-phosphoglycerol. The PE:PG ratio for the two model membranes is close, but the fraction of lipids composed of long-chain and cyclopropane-containing fatty acids changes significantly, causing differences between the two models. Compared to previous model membranes built for Escherichia coli, the inner membrane of P. aeruginosa has a longer averaged lipid tail length and a higher percentage of PG lipids, which are responsible for the changes in membrane properties like membrane thickness and stiffness. Most importantly, the comparison to experiments shows good agreements and encourages the model’s use to study the behavior of proteins from P. aeruginosa associated with the membrane. (c) 2018 American Institute of Physics. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5Product Details of 923-61-5).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Product Details of 923-61-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Alvarez-Benedicto, Ester et al. published their research in Biomaterials Science in 2022 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Application of 923-61-5

Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA) was written by Alvarez-Benedicto, Ester;Farbiak, Lukas;Marquez Ramirez, Martha;Wang, Xu;Johnson, Lindsay T.;Mian, Osamah;Guerrero, Erick D.;Siegwart, Daniel J.. And the article was included in Biomaterials Science in 2022.Application of 923-61-5 The following contents are mentioned in the article:

Lipid nanoparticles (LNPs) have been established as an essential platform for nucleic acid delivery. Efforts have led to the development of vaccines that protect against SARS-CoV-2 infection using LNPs to deliver mRNA (mRNA) coding for the viral spike protein. Out of the four essential components that comprise LNPs, phospholipids represent an underappreciated opportunity for fundamental and translational study. We investigated this avenue by systematically modulating the identity of the phospholipid in LNPs with the goal of identifying specific moieties that directly enhance or hinder delivery efficacy. Results indicate that phospholipid chem. can enhance mRNA delivery by increasing membrane fusion and enhancing endosomal escape. Phospholipids containing phosphoethanolamine (PE) head groups likely increase endosomal escape due to their fusogenic properties. Addnl., it was found that zwitterionic phospholipids mainly aided liver delivery, whereas neg. charged phospholipids changed the tropism of the LNPs from liver to spleen. These results demonstrate that the choice of phospholipid plays a role intracellularly by enhancing endosomal escape, while also driving organ tropism in vivo. These findings were then applied to Selective Organ Targeting (SORT) LNPs to manipulate and control spleen-specific delivery. Overall, selection of the phospholipid in LNPs provides an important handle to design and optimize LNPs for improved mRNA delivery and more effective therapeutics. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5Application of 923-61-5).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Application of 923-61-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Qin-Qin et al. published their research in Ecotoxicology and Environmental Safety in 2021 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Name: (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate

Metabolic profiling of nanosilver toxicity in the gills of common carp was written by Li, Qin-Qin;Xiang, Qian-Qian;Lian, Li-Hong;Chen, Zhi-Ying;Luo, Xia;Ding, Cheng-Zhi;Chen, Li-Qiang. And the article was included in Ecotoxicology and Environmental Safety in 2021.Name: (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate The following contents are mentioned in the article:

Studies have shown silver nanoparticles (AgNPs) exposure can result in a series of toxic effects in fish gills. However, it is still unclear how AgNPs affect metabolite expression and their related mol. metabolic pathways in fish gills. In this study, we employed untargeted metabolomics to study the effects of AgNPs and silver supernatant ions on fish gill metabolites. The results showed that AgNPs can induce significant changes in 96 differentially expressed metabolites, which mainly affect amino acid metabolism and energy metabolism in fish gills. Among these metabolites, AgNPs specifically induce significant changes in 72 differentially expressed metabolites, including -histidine, -isoleucine, -phenylalanine, and citric acid. These metabolites were significantly enriched in the pathways of aminoacyl-tRNA biosynthesis, ABC transporters, and the citrate cycle. In contrast, Ag+ supernatant exposure can specifically induce significant changes in 14 differentially expressed metabolites that mainly interfere with sphingolipid metabolism in fish gills. These specifically regulated fish gill metabolites include sphinganine, sphingosine, and phytosphingosine, which were significantly enriched in the sphingolipid metabolism pathway. Our results clearly reveal the effects and potential toxicity mechanisms of AgNPs on fish gill metabolites. Furthermore, our study further determined the unique functions of released silver ions in AgNPs toxicity in fish gills. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5Name: (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Name: (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts