Liu, Yuxin et al. published their research in Ultrasonics Sonochemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Application In Synthesis of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Ultrasonic-assisted extraction of polyphenolic compounds from Paederia scandens (Lour.) Merr. Using deep eutectic solvent: optimization, identification, and comparison with traditional methods was written by Liu, Yuxin;Zhe, Wang;Zhang, Ruifen;Peng, Ziting;Wang, Yuxi;Gao, Heqi;Guo, Zhiqiang;Xiao, Juan. And the article was included in Ultrasonics Sonochemistry in 2022.Application In Synthesis of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

Ultrasonic-assisted extraction (UAE) coupled with deep eutectic solvent (DES) is a novel, efficient and green extraction method for phytochems. In this study, the effects of 16 DESs coupled with UAE on the extraction rate of polyphenols from Paederia scandens (Lour.) Merr. (P. scandens), an edible and medicinal herb, were investigated. DES synthesized with choline chloride and ethylene glycol at a 1:2 M ratio resulted in the highest extractability. Moreover, the effects of extraction parameters were investigated by using a two-level factorial experiment followed by response surface methodol. The optimal parameters (water content in DES of 49.2%, the actual ultrasonic power of 72.4 W, and ultrasonic time of 9.7 min) resulted in the optimal total flavonoid content (TFC) (27.04 mg CE/g DW), ferric-reducing antioxidant power (FRAP) value (373.27μmol Fe(II)E/g DW) and 2,2′-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS+) value (48.64μmol TE/g DW), closely matching the exptl. results. Furthermore, a comparison study demonstrated that DES-UAE afforded the higher TFC and FRAP value than traditional extraction methods. 36 individual polyphenolic compounds were identified and quantified by ultra-high-performance liquid chromatog.-mass spectrometry (UHPLC-MS) in P. scandens extracts, and of which 30 were found in the extracts obtained by DES-UAE. Addnl., DES-UAE afforded the highest sum of individual polyphenolic compound content. These results revealed that DES-UAE enhanced the extraction efficiency for polyphenols and provided a scientific basis for further processing and utilization of P. scandens. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Application In Synthesis of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Application In Synthesis of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lee, Jin Woo et al. published their research in Applied Biological Chemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

The soybean cultivar SCEL-1 shows potent anti-photoaging effects in a UV-induced three-dimensional human skin and hairless mouse model was written by Lee, Jin Woo;Peng, Lei;Jegal, Hyun;Park, No-June;Bong, Sim-Kyu;Lee, Joon Won;Pyo, Jeong Joo;Choi, Yongsoo;Kim, Su-Nam. And the article was included in Applied Biological Chemistry in 2022.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

Soybean (Glycine max) is one of the major sources of nutrition and is used as a raw material for food and as a source of feed for livestock. The efficacy of soybeans on skin health includes their ability to reduce wrinkles and pigmentation and increase skin elasticity and moisture content. Black soybean has been consumed worldwide for a long time, especially in Korea, and is used as a medicinal food against several disorders related to the skin. To evaluate whether its effect on the skin is different based on the cultivar of soybeans, three black soybean cultivars collected in Korea, Soybean Core collection Elite Line-1 (SCEL-1), Chung Ja-3 (CJ-3) and Won Heuk (WH), were selected to compare their effect on improving photoaging induced by UV rays (UVs). We found that SCEL-1 exhibited the best efficacy among the three cultivars tested, and treatment with this soybean extract significantly reduced the expression of matrix metalloproteinase-1 (MMP-1), preventing the degradation of collagen in a 3D human skin model. In addition, SCEL-1 application improved wrinkle- and photoaging-related symptoms, such as epidermal thickening, collagen deficiency and immune cell infiltration, in an animal model established by UV irradiation Procyanidin B2 and epicatechin isolated from the SCEL-1 cultivar inhibited MMP-1 biosynthesis in UVB-irradiated human dermal fibroblasts, and these two major components are likely related to more significantly attenuated skin photoaging. Therefore, our results indicated that SCEL-1 exhibits good anti-wrinkle effects compared to the other two black soybean cultivars, suggesting that it represents an excellent agent for anti-photoaging. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Khanal, Pukar et al. published their research in Journal of Ayurveda and Integrative Medicine in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Network pharmacology of AYUSH recommended immune-boosting medicinal plants against COVID-19 was written by Khanal, Pukar;Duyu, Taaza;Patil, B. M.;Dey, Yadu Nandan;Pasha, Ismail;Wanjari, Manish;Gurav, Shailendra S.;Maity, Arindam. And the article was included in Journal of Ayurveda and Integrative Medicine in 2022.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

The Ministry of AYUSH recommended the use of a decoction of the mixture of Ocimum tenuiflorum, Cinnamomum verum, Piper nigrum, Zingiber officinale, and Vitis vinifera as a preventive measure by boosting the immunity against the severity of infection caused by a novel coronavirus (COVID-19). The present study aimed to identify the probable modulated pathways by the combined action of AYUSH recommended herbal tea and golden milk formulation as an immune booster against COVID-19. Reported phytoconstituents of all the medicinal plants were retrieved from the ChEBI database, and their targets were predicted using DIGEP-Pred. STRING database and Cytoscape were used to predict the protein-protein interaction and construct the network, resp. Likewise, MolSoft and admet SAR2.0 were used to predict the druglikeness score and ADMET profile of phytoconstituents. The study identified the modulation of HIF-1, p53, PI3K-Akt, MAPK, cAMP, Ras, Wnt, NF-kappa B, IL-17, TNF, and cGMP-PKG signaling pathways to boost the immune system. Further, multiple pathways were also identified which are involved in the regulation of pathogenesis of the multiple infections and non-infectious diseases due to the lower immune system. Results indicated that the recommended herbal formulation not only modulated the pathways involved in boosting the immunity but also modulated the multiple pathways that are contributing to the progression of multiple disease pathogenesis which would add the beneficial effect in the co-morbid patients of hypertension and diabetes. The study provides the scientific documentation of the role of the Ayurvedic formulation to combat COVID-19. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Shu, Bin et al. published their research in Journal of the Science of Food and Agriculture in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Product Details of 29106-49-8

Newly generated and increased bound phenolic in lychee pulp during heat-pump drying detected by UPLC – ESI-triple-TOF-MS / MS was written by Shu, Bin;Wang, Junmin;Wu, Guangxu;Cao, Xuejiao;Huang, Fei;Dong, Lihong;Zhang, Ruifen;Liu, Hesheng;Su, Dongxiao. And the article was included in Journal of the Science of Food and Agriculture in 2022.Product Details of 29106-49-8 The following contents are mentioned in the article:

During the thermal processing of fruit, it has been observed for phenolic compounds to either degrade, polymerize, or transfer into macromols. In this study, the bound and free phenolic compound composition, content, and phenolic-related enzyme activity of lychee pulp were investigated to determine whether the free phenolic had converted to bound phenolic during heat-pump drying (HPD). It was found that after HPD, when compared with the fresh lychee pulp (control), the content of bound phenolics of dried lychee pulp had increased by 62.69%, whereas the content of free phenolics of dried lychee pulp decreased by 22.26%. It was also found that the antioxidant activity of bound phenolics had also increased after drying. With the use of high-performance liquid chromatog.-tandem mass spectrometry, it was identified that (+)-gallocatechin, protocatechuic aldehyde, isorhamnetin-3-O-rutoside, 3,4-dihydroxybenzeneacetic acid, and 4-hydroxybenzoic acid were newly generated during HPD, when compared with the control sample. After drying, the contents of gallic acid, catechin, 4-hydroxybenzoic acid, vanillin, syringic acid, and quercetin in bound phenolics had also increased, and polyphenol oxidase and peroxidase still showed enzyme activity, which could be related to the conversion of free phenolics to bound phenolics. Overall, during the thermal processing of lychee pulp, the free phenolics weres found to be converted into bound phenolics, new substances were generated, and antioxidant activity was increased. Hence, it was concluded that HPD improved the bound phenolics content of lychee pulp, thus providing theor. support for the lychee processing industry. 2021 Society of Chem. Industry. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Product Details of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Product Details of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Choi, Jinhee et al. published their research in Molecular & Cellular Toxicology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Safety of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Antioxidant and apoptotic activity of cocoa bean husk extract on prostate cancer cells was written by Choi, Jinhee;Yang, Changwon;Lim, Whasun;Song, Gwonhwa;Choi, Haeyeon. And the article was included in Molecular & Cellular Toxicology in 2022.Safety of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

Although prostate cancer is the most commonly diagnosed cancer in men, its incidence among Asians, who consume foods rich in phenols, is relatively low compared with that in other populations. Cocoa bean husk (CBH) is an important byproduct of the cocoa industry; its polyphenol content (catechin, epicatechin, and procyanidin B) is as high as that of cocoa beans. However, there are no studies on the anticancer effect of CBH. Herein, we assessed the antioxidant and anticancer effects of CBH on prostate cancer cells. We fractionated CBH ethanol crude extract and compared the total polyphenol content, total flavonoid content, and DPPH and ABTS+ radical scavenging activities of the fractions. Catechin, epicatechin, and procyanidin B were analyzed by HPLC in the Et acetate (EAF) and butanol (BF) fractions, which had the highest physiol. content and antioxidant activity. PC3 and DU145 cells were treated with the two fractions, and annexin V/propidium iodide, and TUNEL assays were performed to assess apoptosis and DNA fragmentation, resp. The highest phytochem. content and antioxidant activity were observed in EAF, followed by those in BF. HPLC anal. revealed high content of phenolic compounds in both these fractions. Notably, catechin (5.64 mg/g), epicatechin (20.47 mg/g), and procyanidin B (20.29 mg/g) were abundant in EAF. Both fractions induced apoptosis in a concentration-dependent manner in PC3 and DU145 cells, and DNA fragmentation at a concentration of 200 μg/mL. CBH, a byproduct of cocoa processing, contains large amounts of phenolic compounds and exhibits high antioxidant activity and anticancer effects on prostate cancer cells. CBH has potential applications as a functional food material. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Safety of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Safety of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Vilkickyte, Gabriele et al. published their research in Journal of Ethnopharmacology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Formula: C30H26O12

Exploring Vaccinium vitis-idaea L. as a potential source of therapeutic agents: antimicrobial, antioxidant, and anti-inflammatory activities of extracts and fractions was written by Vilkickyte, Gabriele;Petrikaite, Vilma;Pukalskas, Audrius;Sipailiene, Ausra;Raudone, Lina. And the article was included in Journal of Ethnopharmacology in 2022.Formula: C30H26O12 The following contents are mentioned in the article:

Vaccinium vitis-idaea L. (lingonberry) leaves and fruits have traditionally been used in Asian and European countries as a natural solution for urinary tract infections, gastrointestinal distress, neurodegenerative diseases, and related inflammatory disorders, which are overall associated with free radical damage and presence of triggering pathogenic strains in the human body. Considering growing attention to natural products, there are not enough scientific data to confirm predominant specialized metabolites, responsible for the traditional therapeutic use of lingonberries. The present study aimed at an in-depth study of specialized metabolite profiling and biol. activity evaluation of lingonberry crude extracts and isolated fractions. Crude dry extracts and fractions from lingonberry leaves and fruits were analyzed by the UPLC-MS method. Potential inhibiting properties against different bacterial strains and hyaluronidase, ability to scavenge hydrogen peroxide, and effect on its production in a macrophage culture J774 were examined Findings suggested the tentative presence of 59 compounds, mainly phenolics, displayed higher bioactivities of particular fractions than that of crude extracts and elucidated particular compounds as candidates in pharmaceuticals. Trimeric and dimeric proanthocyanidins from lingonberry leaves and fruits were shown to have the strongest antimicrobial, antioxidant, and anti-inflammatory potential. This study revealed specialized metabolites responsible for the traditional medicinal properties of lingonberries and pointed out demand for further purification and new research directions of proanthocyanidins in the frame of their multipharmacol. perspectives. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Formula: C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Formula: C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Olugbodi, Janet Olayemi et al. published their research in Biomedicine & Pharmacotherapy in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Electric Literature of C30H26O12

Glyphaeaside C-enriched extract of Glyphaea brevis restored the antioxidant and reproductive integrity of 1,4-Dinitrobenzene-intoxicated rats was written by Olugbodi, Janet Olayemi;Olaleye, Mary Tolulope;Mostafa-Hedeab, Gomaa;Alqarni, Mohammed;Ilesanmi, Omotayo Babatunde;Batiha, Gaber El-Saber;Akinmoladun, Afolabi Clement. And the article was included in Biomedicine & Pharmacotherapy in 2022.Electric Literature of C30H26O12 The following contents are mentioned in the article:

This study assessed the fertility potential of methanol leaf extract of Glyphaea brevis (MGB) in rats exposed to 1,4-Dinitrobenzene (DNB), an environmental reprotoxicant. Male Wistar rats were orally exposed to 50 mg/kg DNB and administered 750 mg/kg MGB, 1500 mg/kg MGB or 300 mg/kg vitamin E for 21 days after 48 h of DNB exposure. Determination of serum reproductive hormone levels by enzyme-linked immunosorbent assays, evaluation of hematol. profile, computer-assisted sperm analyses (CASA) of sperm kinematics and morphol., assessment of testicular and spermatozoan antioxidant systems, and histopathol. evaluation of reproductive tissues were performed. HPLC-DAD anal. identify Glyphaeaside C as the major component of the extract In rats toxified with 50 mg/kg DNB, testicular and epididymal weights, serum levels of LH, testosterone and FSH, and packed cell volume, Hb concentration, and white blood cell counts were decreased. There was altered sperm kinematics which reflected in increased sperm abnormalities. Treatment with the Glyphaeaside C -enriched MGB counteracted all DNB-induced changes and corrected DNB-induced aberrations in kinematic endpoints. Also, testicular and epididymal antioxidant systems were disrupted and there was damage to tissue histoarchitecture. Furthermore, our mol. docking study revealed that Glyphaeaside-C exhibited high binding affinities to the binding pocket of some free radical generating enzymes. Conclusively, the results indicated that Glyphaeaside C-enriched extract of Glyphaea brevis leaf enhanced the quality of semen and improved the functional capabilities of spermatozoa following exposure of rats to DNB which could translate to enhanced fertility. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Electric Literature of C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Electric Literature of C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Perez-Navarro, Jose et al. published their research in Journal of the Science of Food and Agriculture in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Vitis vinifera Turkish novel table grape ′ Karaerik ′. Part II : Non-anthocyanin phenolic composition and antioxidant capacity was written by Perez-Navarro, Jose;Hermosin-Gutierrez, Isidro;Gomez-Alonso, Sergio;Kurt-Celebi, Aynur;Colak, Nesrin;Akpinar, Erdal;Hayirlioglu-Ayaz, Sema;Ayaz, Faik A.. And the article was included in Journal of the Science of Food and Agriculture in 2022.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

Karaerik is a novel table grape (Vitis vinifera L.) native to Turkey and widely cultivated in areas bordering the city of Erzincan. Because of the demonstrated beneficial effects on human health of the grape phenolic composition, the aim of this work was to conduct a detailed profiling of non-anthocyanin phenolic fractions from different grape tissues of the Karaerik table grape. Both qual. and quant. characterization of phenolic compounds were achieved using high-performance liquid chromatog.-diode array detection-electrospray ionization-tandem mass spectrometry. Total phenolic content and oxygen radical absorbance capacity were also determined to evaluate the antioxidant properties of this table grape. A high number of non-anthocyanin phenolic compounds was identified in ′Karaerik′ table grape skins and seeds, including 11 flavonols, six hydroxycinnamic acid derivatives, two stilbenes, several monomeric and dimeric flavan-3-ols and proanthocyanidins. Quercetin-type derivatives dominated the flavonol profile of grape skins, followed by myricetin type. Tartaric acid esters of three acids (caffeic, coumaric and ferulic acids) were the main hydroxycinnamic acid derivatives in this cultivar. Qual. and quant. differences were observed in flavan-3-ol composition among the grape tissues. Proanthocyanidins were the most abundant class of phenolic compounds in Karaerik grapes, being mainly located in seeds. Higher antioxidant capacity values were determined in grape seeds, in correlation with the total phenolic content. These results provide useful information for a better understanding of phenolic antioxidants from the Karaerik table grape and will contribute to promoting the varietal identity and health-related properties of this fruit. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhang, Bo et al. published their research in Plant Biotechnology Journal in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Category: alcohols-buliding-blocks

The MdBBX22-miR858-MdMYB9/11/12 module regulates proanthocyanidin biosynthesis in apple peel was written by Zhang, Bo;Yang, Hui-Juan;Qu, Dong;Zhu, Zhen-Zhen;Yang, Ya-Zhou;Zhao, Zheng-Yang. And the article was included in Plant Biotechnology Journal in 2022.Category: alcohols-buliding-blocks The following contents are mentioned in the article:

Proanthocyanidins (PAs) have antioxidant properties and are beneficial to human health. The fruit of apple (Malus x domestica Borkh.), especially the peel, is rich in various flavonoids, such as PAs, and thus is an important source of dietary antioxidants. Previous research on the regulation of PAs in apple has mainly focussed on the transcription level, whereas studies conducted at the post-transcriptional level are relatively rare. In this study, we investigated the function of mdm-miR858, a miRNA with multiple functions in plant development, in the peel of apple fruit. We showed that mdm-miR858 neg. regulated PA accumulation by targeting MdMYB9/11/12 in the peel. During fruit development, mdm-miR858 expression was neg. correlated with MdMYB9/11/12 expression and PA accumulation. A 5′-RACE experiment, GUS staining assays and transient luminescent assays indicated that mdm-miR858 cleaved and inhibited the expression of MdMYB9/11/12. Overexpression of mdm-miR858 in apple calli, tobacco and Arabidopsis reduced the accumulation of PAs induced by overexpression of MdMYB9/11/12. Furthermore, we found that MdBBX22 bound to the mdm-miR858 promoter and induced its expression. Overexpression of MdBBX22 induced the expression of mdm-miR858 to inhibit the accumulation of PAs in apple calli overexpressing MdMYB9/11/12. Under light stress, MdBBX22 induced mdm-miR858 expression to inhibit PA accumulation and thereby indirectly enhanced anthocyanin synthesis in the peel. The present results revealed that the MdBBX22-miR858-MdMYB9/11/12 module regulates PA accumulation in apple. The findings provide a reference for further studies of the regulatory mechanism of PA accumulation and the relationship between PAs and anthocyanins. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Category: alcohols-buliding-blocks).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

M. AbouZeid, Enaam et al. published their research in Food Research International in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Reference of 29106-49-8

Comprehensive metabolite profiling of Phoenix rupicola pulp and seeds using UPLC-ESI-MS/MS and evaluation of their estrogenic activity in ovariectomized rat model was written by M. AbouZeid, Enaam;H. Afifi, Ahmed;Salama, Abeer;A. Hussein, Rehab;S. Youssef, Fadia;El-Ahmady, Sherweit H.;Mohamed Ammar, Nagwa. And the article was included in Food Research International in 2022.Reference of 29106-49-8 The following contents are mentioned in the article:

Dates have been consumed since ancient times as functional foods which beside their high nutritional value possess various biol. activities. Phoenix rupicola T. Anderson (Cliff date palm) produces non-conventional edible dates, however, due to low natural abundance, these dates arent com. important as the dates of Phoenix dactylifera L. The present study was designed to evaluate the phytochem. constituents as well as the estrogenic activity of P. rupicola dates. UPLC-ESI-MS/MS approach was used to study the metabolite profile of the 70% aqueous methanol extracts of P. rupicola dates (pulps and seeds) for the first time. A total of fifty-five metabolites were tentatively identified in both extracts, belonging to different classes, chiefly phenolic compounds viz. procyanidins, flavonoid glycosides, hydroxycinnamic acid derivatives, as well as, fatty acids, organic acids and sphingolipids. Acute toxicity studies revealed that the studied extracts were safe at oral doses up to 2 g/kg. Besides, they possessed significant (P < 0.05) estrogenic activity in ovariectomized rat model, as compared to ovariectomized (OVX) and reference standard (17β-estradiol; OVX-E) groups. Moreover, the extracts showed significant improvement on bone metabolism, lipid profile, liver and kidney functions. In silico docking study revealed that various metabolites possessed high binding affinities to both ERs, where 2-palmitoyl glycerol (-10.28 Kcal/mol) and aminotetradecanetriol (-9.61 Kcal/mol) showed the strongest affinities to Erα and Erβ, resp. Thus, it can be concluded that P. rupicola pulp and seeds possess bioactive phytoconstituents comparable to those in P. dactylifera and can be used as a safe and efficient natural estrogen substitute in postmenopausal women. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Reference of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Reference of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts