Shen, Jincheng et al. published their research in Journal of the Science of Food and Agriculture in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Related Products of 29106-49-8

Integrated metabolomic and transcriptomic analysis reveals factors underlying differences in fruit quality between Fragaria nilgerrensis and Fragaria pentaphylla was written by Shen, Jincheng;Shao, Wanlu;Li, Junmin;Lu, Hongfei. And the article was included in Journal of the Science of Food and Agriculture in 2022.Related Products of 29106-49-8 The following contents are mentioned in the article:

Strawberries have become one of the most popular fruits because of their unique flavor and high nutritional value. Fruit quality and price are the most important criteria that determine consumer acceptability. Fragaria nilgerrensis and Fragaria pentaphylla are two wild Asian diploid strawberry species that differ in fruit color, taste, and aroma. To understand the mol. mechanisms involved in the formation of high-quality strawberry fruit, we integrated transcriptomics and metabolomics research methods to compare the metabolic and biosynthetic mechanisms of the two Fragaria species. F. nilgerrensis fruit has higher amino acid and lipid contents and a higher sugar-to-acid ratio than F. pentaphylla fruit does, underlying their superior nutritional value, aroma, firmness, and taste. Compared with F. nilgerrensis fruit, F. pentaphylla fruit contained more flavonoids, indicating its enhanced color and health benefits. In addition, candidate structural genes that regulate the biosynthesis of flavonoids, amino acids, and glycerophospholipids in the two strawberry fruit were screened. The differences in aroma, firmness, and taste between F. nilgerrensis fruit and F. pentaphylla fruit are probably due to differences in their amino acid and lipid contents, as well as the difference in their sugar-to-acid ratios. Eight key structural genes that may play important roles in the biosynthesis of amino acids, lipids, and flavonoids were identified. 2021 Society of Chem. Industry. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Related Products of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Related Products of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kulic, Zarko et al. published their research in Planta Medica in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.SDS of cas: 29106-49-8

A Detailed View on the Proanthocyanidins in Ginkgo Extract EGb 761 was written by Kulic, Zarko;Ritter, Thomas;Roeck, Birgit;Elsaesser, Jens;Schneider, Heike;Germer, Stefan. And the article was included in Planta Medica in 2022.SDS of cas: 29106-49-8 The following contents are mentioned in the article:

The Ginkgo extract EGb 761 manufactured with leaves of Ginkgo bilobahas been continuously produced over decades at a large scale and is used as a clin. proven remedy for, among other things, the improvement of age-associated cognitive impairment and quality of life in patients with mild dementia. It belongs to the class of extracts addressed as quantified extracts according to the European Pharmacopeia. Accordingly, several compounds (e.g., flavone glycosides and terpene trilactones) are acknowledged to contribute to its clin. efficacy. Covering only about 30% of the mass balance, these characterized compounds are accompanied by a larger fraction of addnl. compounds, which might also contribute to the clin. efficacy and safety of the extract As part of our systematic research to fully characterize the constituents of Ginkgo extract EGb 761, we focus on the structural class of proanthocyanidins in the present study. Structural insights into the proanthocyanidins present in EGb 761 and a quant. method for their determination using HPLC are shown. The proanthocyanidins were found to be of oligomeric to polymeric structure, which yield delphinidin and cyanidin as main building blocks after acidic hydrolysis. A validated HPLC method for quantification of the anthocyanidins was developed in which delphinidin and cyanidin were detected after hydrolysis of the proanthocyanidins. The content of proanthocyanidins in Ginkgo extract EGb 761 was found to be approx. 7%. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8SDS of cas: 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.SDS of cas: 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kpabi, Iwaba et al. published their research in South African Journal of Botany | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.HPLC of Formula: 29106-49-8

Cassia sieberiana root bark used in traditional medicine in Togo: Anthelmintic property against Haemonchus contortus and tannins composition was written by Kpabi, Iwaba;Munsch, Thibaut;Agban, Amegninou;Thery-Kone, Isabelle;Dorat, Joelle;Boudesocque-Delaye, Leslie;Delaye, Pierre-Olivier;Neveu, Cedric;Lanoue, Arnaud;Enguehard-Gueiffier, Cecile. And the article was included in South African Journal of Botany.HPLC of Formula: 29106-49-8 The following contents are mentioned in the article:

Helminth infections of livestock result in economic losses around the globe. The majority of the people in West Africa treats such infections with medicinal plants related to the local traditional medicine. In a previous ethnomedicinal survey carried out in the north of Togo, traditional healers frequently cited Cassia sieberiana DC to treat helminth infections. The aim of the present study was to validate the traditional application of C. sieberiana root bark as a dewormer and to analyze the metabolite composition in preparations with this activity. Two tannin-rich fractions (FrE14 and FrE15) obtained from Et acetate extract were submitted to UPLC-MS anal. The anthelmintic activity of C. sieberiana extracts and tannins-rich fractions was investigated on the small ruminant parasite Haemonchus contortus using Larval Migration Inhibition tests. The Et acetate, butanol and aqueous extracts significantly disrupted larval migration of Haemonchus contortus L3 with inhibition of 30.3%, 22.2% and 26.5% resp. at 2.5 mg/mL, as compared to neg. control. The two tannin-rich fractions, FrE14 and FrE15 presented larval migration inhibition of 6.5% and 20.7% resp. at the same concentration From these two fractions, 28 flavan-3-ols were identified including 3 monomers (catechin, epicatechin and epiafzelechin), 22 dimers (7 homodimers and 15 heterodimers) as well as 3 newly described trimers consisting of (epi)afzelechin, (ent)cassiaflavan or (epi)guibourtidinol subunits. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8HPLC of Formula: 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.HPLC of Formula: 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Bestulic, Ena et al. published their research in Journal of Food Composition and Analysis in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Comparison of different maceration and non-maceration treatments for enhancement of phenolic composition, color intensity, and taste attributes of Malvazija istarska (Vitis vinifera L.) white wines was written by Bestulic, Ena;Rossi, Sara;Plavsa, Tomislav;Horvat, Ivana;Lukic, Igor;Bubola, Marijan;Ilak Persuric, Anita Silvana;Jeromel, Ana;Radeka, Sanja. And the article was included in Journal of Food Composition and Analysis in 2022.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

To investigate the effect of several vinification techniques aimed to enhance wine phenolic profile and sensory quality, maceration treatments of different duration and temperature (pre-fermentative cold one day maceration at 10°C, seven days maceration at 16°C, and prolonged post-fermentative 21 day maceration at 16°C) and non-maceration treatments including tannin addition and late harvest grapes vinification were performed and compared to a standard white grape processing treatment. Produced wines were subjected to the anal. of phenols by high-performance liquid chromatog., color intensity, and quant. descriptive and hedonic sensory anal. The increase in individual phenolic compound concentrations was mostly pronounced in maceration treatment wines, for both phenolic acids and flavan-3-ols, as well as for the sum of phenolic compound concentrations determined by high-performance liquid chromatog. that tripled in relation to that determined in control treatment wine. Pre-fermentative cold maceration led to a moderate increase in phenolic compounds content without accentuating bitterness and astringency sensations. Wine phenolic composition and color intensity were mostly affected by the prolonged post-fermentative 21 day maceration. Vinification of late harvest grapes produced a wine graded with the highest pos. score for taste. The obtained distinct wine styles resulting from the application of the investigated practices may lead to a further diversification of white wine market. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Yonglin et al. published their research in European Food Research and Technology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Reference of 29106-49-8

Chemical profiling of ancient bud black tea with a focus on the effects of shoot maturity and fermentation by UHPLC-HRMS was written by Li, Yonglin;Chen, Ning;Li, Wenting;Lou, Huaqiao;Li, Yan;Xiong, Qian;Bai, Ruoxue;Wang, Jintao;Hu, Yongdan;Ren, Dabing;Yi, Lunzhao. And the article was included in European Food Research and Technology in 2022.Reference of 29106-49-8 The following contents are mentioned in the article:

Ancient bud black tea (ABBT) is a special kind of black tea (BT) made from the bud of ancient tea tree. However, there is limited information about its chem. composition and the effects of shoot maturity and fermentation By UHPLC-HRMS, 208 compounds including catechins, flavonoids, phenolic acids, alkaloids and others were qual. and quant. analyzed in ABBT. By comparison with traditional BT made from one bud with multiple leaves, it was suggested that the shoot maturity has great effects on the chem. profile of BT. Most of the detected compounds exhibited lower content in ABBT, while only a little number of compounds (e.g., theaflavin-3′′-gallate, theaflavin-3-gallate, theaflavin-3,3′-gallate, quercitrin, isoquercitrin, and quinic acid) showed significantly higher contents in ABBT. During fermentation, the contents of these compounds varied obviously but with inconsistent trends. Simple catechins (e.g., EC, EGCG), dimers of catechins and their derivatives (e.g., prodelphinidin B2) showed an inconsistent decreasing trend, while oxidative polymerization products such as theaflavin-3,3′-gallate and theasinensin A showed a continuous increasing trend of content. Addnl., the contents of free phenolic acids, flavonoids, caffeine and amino acids showed a decreasing trend of content, while acylated phenolic acids exhibited an opposite trend. As a result, this work revealed the chem. profile of ABBT and enhanced our understanding with respect to the effects of shoot maturity and fermentation This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Reference of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Reference of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xie, Yong et al. published their research in Journal of Agricultural and Food Chemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Application of 29106-49-8

In Vitro and In Vivo Digestive Fate and Antioxidant Activities of Polyphenols from Hulless Barley: Impact of Various Thermal Processing Methods and β-Glucan was written by Xie, Yong;Gong, Ting;Liu, Haibo;Fan, Zhiping;Chen, Zhaojun;Liu, Xiong. And the article was included in Journal of Agricultural and Food Chemistry in 2022.Application of 29106-49-8 The following contents are mentioned in the article:

The unfavorable bioaccessibility of polyphenols in cereal-based food limits their physiol. functions as most polyphenols bind spontaneously to the cell-wall polysaccharides. Effects of β-glucan and various thermal processing methods including flaking and roasting, stir-frying, steam-flash explosion, and popping expansion on the bioaccessibility and antioxidant properties of polyphenols from hulless barley in vitro and in vivo were investigated in this study. The bioaccessibility and antioxidant capacity (via DPPH, ·OH, and ·O2 free radical scavenging, TAC, and FRAP assays) of polyphenol extracts from hulless barley treated by steam-flash explosion and popping expansion increased significantly before and after in vitro digestion compared to those from raw and other processed hulless barley. Further, the total polyphenol content of hulless barley elevated dramatically following hydrolyzing with β-glucanase, which was pos. correlated with the antioxidant activity. Addnl., the hulless barley treated with steam-flash explosion exhibited potent antidiabetic effects and antioxidant capacity (via TAC, SOD, GSH-Px, CAT, and MDA assays) in type 2 diabetic rats. The absorption of individual phenolic compounds in the alimentary canal of rats was impacted obviously by thermal processing. This study provides new insights into enhancing the bioaccessibility of the polyphenols and suggests that β-glucans interact with polyphenols and proteins in the hulless barley matrix. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Application of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Application of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Barros de Medeiros, Viviane Priscila et al. published their research in Food Research International in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C30H26O12

Spirulina platensis biomass enhances the proliferation rate of Lactobacillus acidophilus 5 (La-5) and combined with La-5 impact the gut microbiota of medium-age healthy individuals through an in vitro gut microbiome model was written by Barros de Medeiros, Viviane Priscila;Salgaco, Mateus Kawata;Pimentel, Tatiana Colombo;Rodrigues da Silva, Thayanne Caroline;Sartoratto, Adilson;Lima, Marcos dos Santos;Sassi, Cristiane Francisca da Costa;Mesa, Victoria;Magnani, Marciane;Sivieri, Katia. And the article was included in Food Research International in 2022.COA of Formula: C30H26O12 The following contents are mentioned in the article:

This study first evaluated the stimulatory effect of S. platensis biomass on the growth of L. acidophilus and the metabolic activity during fermentation (37 °C, 72 h) in a culture medium. The results demonstrated a higher impact of S. platensis biomass than fructooligosaccharide (FOS), an established prebiotic. Higher L. acidophilus proliferation rates and metabolic activity were observed (lower pH values and higher concentrations of acetic, lactic, and propionic acids) in the presence of S. platensis. Then, we evaluated the effects of the S. platensis biomass (1.5 g, twice a day, 5 days) in association with L. acidophilus (106 CFU/g) on the gut microbiota composition of medium-age healthy individuals through the Simulator of Human Intestinal Microbial Ecosystem (SHIME) and measurement of metabolites. L. acidophilus (La5) and L. acidophilus + S. platensis (Spi-La5) could pos. modulate the intestinal microbiota. The administration of La5 resulted in increases in Bacteroides, Megasphaera, Lactobacillus, and Parabacteroides genus abundance, with a consequent decrease in ammonium ions. The administration of Spi-La5 increased the abundance of the genus Erysipelatoclostridium, Roseburia, Enterococcus, Bifidobacterium, Coriobacteriaceae UCG-003, Enterobacter, and Paraclostridium. The results demonstrate that the intestinal microbiota was differently modified by administrating La5 and Spi-La5 and indicate the latter as an alternative for microbiota pos. modulation in healthy individuals. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8COA of Formula: C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xiang, Jie et al. published their research in Plant Foods for Human Nutrition in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Computed Properties of C30H26O12

Inhibition of Three Diabetes-Related Enzymes by Procyanidins from Lotus (Nelumbo nucifera Gaertn.) Seedpods was written by Xiang, Jie;Raka, Rifat Nowshin;Zhang, Luocheng;Xiao, Junsong;Wu, Hua;Ding, Zhiqian. And the article was included in Plant Foods for Human Nutrition in 2022.Computed Properties of C30H26O12 The following contents are mentioned in the article:

The inhibitory effects of procyanidins from lotus (Nelumbo nucifera Gaertn.) seedpods on the activities of α-amylase, α-glucosidase and protein tyrosine phosphatase 1B (PTP1B), were studied and compared with those of (+)-catechin, (-)-epicatechin, epigallocatechin gallate (EGCG), procyanidin dimer B2 and trimer C1. The results showed that Lotus procyanidin extract (LPE) significantly inhibited α-amylase, α-glucosidase and PTP1B with IC50 values of 5.5, 1.0, and 0.33μg/mL, resp. The inhibition increased with the d.p. and the existence of galloyl or gallocatechin units. Kinetic anal. showed that LPE inhibited α-glucosidase activity in a mixed competitive and noncompetitive mode. Fluorescence quenching revealed that α-glucosidase interacted with LPE or EGCG in an apparent static mode, or the model of “sphere of action”. The apparent static (K) and bimol. (kq) constants were 4375 M-1 and 4.375 x 1011 M-1 s-1, resp., for LPE and 1195 M-1 and 1.195 x 1011 M-1 s-1, resp., for EGCG. Mol. docking anal. provided further information on the interactions of (+)-catechin, (-)-epicatechin, EGCG, B2 and C1 with α-glucosidase. It is hypothesized that LPE may bind to multiple sites of the enzyme through hydrogen bonding and hydrophobic interactions, leading to conformational changes in the enzyme and thus inhibiting its activity. These findings first elucidate the inhibitory effect of LPE on diabetes-related enzymes and highlight the usefulness of LPE as a dietary supplement for the prophylaxis of diabetes. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Computed Properties of C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Computed Properties of C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wu, J. et al. published their research in Materials Today Nano in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Electric Literature of C30H26O12

Mechanistic insight into the one step green synthesis of hybrid rGO/Fe NPs was written by Wu, J.;Wu, P.;Weng, X.;Lin, J.;Owens, G.;Chen, Z.. And the article was included in Materials Today Nano in 2022.Electric Literature of C30H26O12 The following contents are mentioned in the article:

Recently, the green synthesis of iron nanoparticles and associated hybrids using plant extracts has attracted much attention due to its low cost, simplicity and environmental friendliness. However, the exact formation mechanism is still unclear. In this study, the one step green synthesis of hybrid rGO/Fe NPs by a tea extract was examined using a response surface methodol. (RSM) to obtain a high activity of rGO/Fe NPs. The results showed that the best conditions for synthesis were an extract concentration = 35 g/L, pH = 7, and temperature = 30°C. The optimized hybrid produced could remove 99.9% of mitoxantrone (MTX) compared to only 78.9% when unoptimized. To better understand the formation process, characterizations by SEM, TEM, AFM, FTIR, XRD, Raman, and XPS were performed. Theses characterizations showed that the Fe NPs produced had a particle size of 25 nm which were deposited randomly across the rGO nanosheet with a thickness of approx. 1.5 nm, indicating that stable hybrid rGO/Fe NPs were successfully synthesized, where the green tea extract exhibited both reducing and capping/stabilizing behavior. Furthermore, the specific biomols. in the green tea extract responsible for bio-reduction and stabilization were identified by GC-MS and LC-MS, which showed that catechins were the main reducing agents, while alkaloids, amino acids and phenolic acids were the main capping/stabilizing agents. Finally, a mechanism for synthesizing rGO/Fe NPs was proposed, where the polyphenols successfully reduced GO and complexed with iron ions to form amorphous ferric (and ferrous) polyphenol complex nanoparticles. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Electric Literature of C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Electric Literature of C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Morimoto, Hayato et al. published their research in Fitoterapia in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Category: alcohols-buliding-blocks

Molecular investigation of proanthocyanidin from Alpinia zerumbet against the influenza A virus was written by Morimoto, Hayato;Hatanaka, Tadashi;Narusaka, Mari;Narusaka, Yoshihiro. And the article was included in Fitoterapia in 2022.Category: alcohols-buliding-blocks The following contents are mentioned in the article:

Proanthocyanidins (PACs) have various bioactivities, such as being anti-bacterial, anti-cancer, and anti-oxidant. Consequently, they have been vigorously studied for the development of new natural bioactive compounds Recently, PAC was isolated from leaves and pseudostems of the medicinal plant Alpinia zerumbet (Pers.) B. L. Burtt and R. M. Smith, and it had shown in vitro antiviral activity against influenza A H1N1 viruses (IAVs). The 50% endpoint dilution method indicated that 0.1 mg/mL A. zerumbet-derived PAC (AzPAC) reduced the titer of IAVs by >3 logs. The antiviral activity of AzPAC means that it can interact directly with viral particles since the antiviral activity test was done by coincubation of PAC with and IAVs before viral infection. However, few studies have investigated the preventive mechanism utilized by AzPAC on influenza virus replication. In this study, the composition of AzPAC and the affinity between AzPAC and IAVs was investigated in detail. We found that AzPAC was composed of an epicatechin, which was linked by inter-flavan bonds between the C4 and C8 positions (B2-type) and the C4 and C6 positions (B5-type) in the terminal units. A quenching assay indicated that AzPAC interacted with IAV membrane proteins, hemagglutinin and neuraminidase. Addnl., CD anal. indicated that AzPAC affected the change in the secondary structure rate of the viral membrane proteins. AzPAC was able to impair the infective process of IAVs via direct interaction with their viral membrane proteins. These results indicate that A. zerumbet is a bioresource for the development of preventive drugs against IAV infection. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Category: alcohols-buliding-blocks).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts