Zlatanovic, Ivana et al. published their research in Natural Product Communications in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Product Details of 29106-49-8

Comprehensive Analysis of the Herbal Mixture Made of Juniperus oxycedrus L. Berries, Inner Bark of Betula pendula Roth., and Grains of Avena sativa L. was written by Zlatanovic, Ivana;Stankovic, Miroslava;Ickovski, Jovana;Dimitrijevic, Ivana;Stojanovic, Gordana. And the article was included in Natural Product Communications in 2022.Product Details of 29106-49-8 The following contents are mentioned in the article:

This is the first report of the high-performance liquid chromatog. and gas chromatog.-mass spectrometry profile of a herbal mixture (HM) made of Juniperus oxycedrus L. (redberry juniper) berries, inner bark of Betula pendula Roth. (silver birch), and grains of Avena sativa L. (oat), and its effect on the Number of micronuclei (MN) in human lymphocytes and toxicity toward Artemia salina. Constituents represented by over 1000μg per g of methanol dry extract were gallic acid, protocatechuic acid, and amentoflavone. The methanol extract of the HM at a concentration of 2.0μg/mL decreased MN frequency by 38.3%, which was more than 3 times greater than that of the radioprotectant amifostine. The essential oil isolated from the HM was composed mainly of β-myrcene (32%) and showed weaker toxicity toward Artemia salina than the pos. control after both incubation periods (24 h and 48 h). These findings suggest that the examined HM, beside its ethnopharmacol. relevance on the elimination of renal calculi, also significantly reduces the Number of MN in human lymphocytes. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Product Details of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Product Details of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ren, Yongfang et al. published their research in Food Chemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Antioxidant activity, stability, in vitro digestion and cytotoxicity of two dietary polyphenols co-loaded by β-lactoglobulin was written by Ren, Yongfang;Liu, He;Wang, Danfeng;Liu, Tingting;Zhang, Ruiyan;Wu, Yushu;Zhang, Yongfang;Han, Jun;Liu, Min. And the article was included in Food Chemistry in 2022.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

The combination of multiple dietary polyphenols may have synergistic beneficial effects. And the beneficial effects can be further improved by the encapsulation of proteins. The interactions of procyanidin B2 (PB2) and/or dihydromyricetin (DMY) with β-lactoglobulin (β-LG) were investigated using multi-spectroscopic techniques and mol. docking. The structural change of β-LG in the presence of PB2 and/or DMY was demonstrated by dynamic light scattering, Fourier transform IR spectroscopy and CD spectroscopy. Response surface anal. was used to optimize the synergistic antioxidant activity between PB2 and DMY. Besides, the antioxidant activity, stability, in vitro digestion and cytotoxicity of PB2 and DMY in the binary and ternary systems were investigated. These studies will elucidate the interaction mechanism of PB2 and/or DMY with β-LG. The research results can provide theor. support for the development of functional foods and beverages with synergistic activity, improved stability and bioaccessibility, thereby promoting human health and preventing diseases. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Oh, Chamteut et al. published their research in Applied and Environmental Microbiology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application of 29106-49-8

Inactivation mechanism and efficacy of grape seed extract for human norovirus surrogate was written by Oh, Chamteut;Chowdhury, Ratul;Samineni, Laxmicharan;Shisler, Joanna L.;Kumar, Manish;Nguyen, Thanh H.. And the article was included in Applied and Environmental Microbiology in 2022.Application of 29106-49-8 The following contents are mentioned in the article:

Proper disinfection of harvested food and water is critical to minimize infectious disease. Grape seed extract (GSE), a commonly used health supplement, is a mixture of plant-derived polyphenols. Polyphenols possess antimicrobial and antifungal properties, but antiviral effects are not well-known. Here we show that GSE outperformed chem. disinfectants (e.g., free chlorine and peracetic acids) in inactivating Tulane virus, a human norovirus surrogate. GSE induced virus aggregation, a process that correlated with a decrease in virus titers. This aggregation and disinfection were not reversible. Mol. docking simulations indicate that polyphenols potentially formed hydrogen bonds and strong hydrophobic interactions with specific residues in viral capsid proteins. Together, these data suggest that polyphenols phys. associate with viral capsid proteins to aggregate viruses as a means to inhibit virus entry into the host cell. Plant-based polyphenols like GSE are an attractive alternative to chem. disinfectants to remove infectious viruses from water or food. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Application of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Rinaldo, Dominique et al. published their research in LWT–Food Science and Technology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Electric Literature of C30H26O12

Browning susceptibility of new hybrids of yam (Dioscorea alata) as related to their total phenolic content and their phenolic profile determined using LC-UV- MS was written by Rinaldo, Dominique;Sotin, Helene;Petro, Dalila;Le-Bail, Gildas;Guyot, Sylvain. And the article was included in LWT–Food Science and Technology in 2022.Electric Literature of C30H26O12 The following contents are mentioned in the article:

In the French West Indies, to cope with the yam disease anthracnose, new hybrids were selected for their resistance to this disease. However, some of them have quality flaws. The new hybrids of Dioscorea alata exhibited contrasted susceptibility to browning in relation to their total phenolic content (r = 0.91). The detailed polyphenol profiles of “INRA15”, highly susceptible to browning, and of “Kabusah”, with moderate susceptibility to this flaw, were achieved by HPLC coupled to UV-Visible and mass spectrometry. For the first time, total procyanidins of yam were finely characterized and quantified using HPLC after phloroglucinolysis, revealing that those compounds are by far the main polyphenols in the two cultivars. Differences in terms of browning susceptibilities of the two cultivars are clearly explained by their contrasted polyphenol profiles: (i) absence vs. presence of catechin which is a substrate of polyphenol oxidase (PPO). – (ii) significant differences in procyanidin levels and in their average d.p. potentially involved in PPO inhibition. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Electric Literature of C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Electric Literature of C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Yuxing et al. published their research in Food Chemistry: X in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Product Details of 29106-49-8

Comparative elucidation of bioactive and volatile components in dry mature jujube fruit (Ziziphus jujuba Mill.) subjected to different drying methods was written by Liu, Yuxing;Liao, Yaxuan;Guo, Minrui;Zhang, Weida;Sang, Yueying;Wang, Hai;Cheng, Shaobo;Chen, Guogang. And the article was included in Food Chemistry: X in 2022.Product Details of 29106-49-8 The following contents are mentioned in the article:

This study investigated the effects of convective drying(CD) and freeze drying(FD) on bioactive and volatile components in jujube. No significant difference in total phenolic, total flavonoids and antioxidant capacity among CD60, CD70, CD80 and FD samples (P > 0.05). LC-MS/MS anal. showed that this trend mainly originated from the dynamic equilibrium relationships between caffeic acid, chlorogenic acid, p-hydroxybenzoic acid, rutin, epicatechin, and quercetin. HS-SPME-GC-MS identified 31 volatile organic compounds (VOCs) comprising more than 80% aldehydes and acids. Principal component anal. distinguished the VOC characteristics of samples subjected to different drying methods. Six VOCs had an odor activity value (OAV) >1, most of which were fatty acid oxidation or Maillard reaction products. Combined with the precursor components, these reactions were speculated to be the major VOC-producing pathways in dried jujube. Considering the bioactive components and flavor retention, CD at 60°C was an effective drying method with potential to replace FD. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Product Details of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Product Details of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Mustafa, Ahmed M. et al. published their research in Food Chemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Name: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity was written by Mustafa, Ahmed M.;Angeloni, Simone;Abouelenein, Doaa;Acquaticci, Laura;Xiao, Jianbo;Sagratini, Gianni;Maggi, Filippo;Vittori, Sauro;Caprioli, Giovanni. And the article was included in Food Chemistry in 2022.Name: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

Berry fruits consumption has increased in recent years because they are rich sources of polyphenols with reported health benefits. The aim of the present work was to develop a new comprehensive and fast HPLC-MS/MS method for simultaneous determination of 36 phenolic compounds (7 anthocyanins, 9 flavonols, 4 flavan-3-ols, 2 dihydrochalcones, 2 flavanones and 12 phenolic acids) present in blueberry, strawberry, and their fruit jam. Blueberry fruits showed higher contents of anthocyanins, flavonols and phenolic acids, while strawberry fruits exhibited higher contents of flavan-3-ols, dihydrochalcones and flavanones. Anthocyanins were the main phenolic constituents in both berries. Furthermore, the higher total phenolic content in the blueberry fruit and jam justified their greater antioxidant capacity measured by DPPH free radical assay, compared to strawberry. In conclusion, this new HPLC-MS/MS method is useful and reliable for quality control and authentication analyses of blueberry and strawberry fruits and their com. food products, such as jams. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Name: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Name: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhou, Yaxing et al. published their research in BMC Genomics in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Related Products of 29106-49-8

Integrated metabolomics and transcriptomic analysis of the flavonoid regulatory networks in Sorghum bicolor seeds was written by Zhou, Yaxing;Lv, Jingbo;Yu, Zhonghao;Wang, Zhenguo;Li, Yan;Li, Mo;Deng, Zhilan;Xu, Qingquan;Cui, Fengjuan;Zhou, Wei. And the article was included in BMC Genomics in 2022.Related Products of 29106-49-8 The following contents are mentioned in the article:

The objective of this study was to reveal the flavonoid biosynthesis pathway in white (Z6), red (Z27) and black (HC4) seeds of the sweet sorghum (Sorghum bicolor) using metabolomics and transcriptomics, to identify different flavonoid metabolites, and to analyze the differentially expressed genes involved in flavonoid biosynthesis. We analyzed the metabolomics and transcriptomics data of sweet sorghum seeds. Six hundred and fifty-one metabolites including 171 flavonoids were identified in three samples. Integrated anal. of transcriptomics and metabolomics showed that 8 chalcone synthase genes (gene19114, gene19115, gene19116, gene19117, gene19118, gene19120, gene19122 and gene19123) involved in flavonoid biosynthesis, were identified and play central role in change of color. Six flavanone including homoeriodictyol, naringin, prunin, naringenin, hesperetin and pinocembrin were main reason for the color difference. Our results provide valuable information on the flavonoid metabolites and the candidate genes involved in the flavonoid biosynthesis pathway in sweet sorghum seeds. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Related Products of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Related Products of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Acosta-Otalvaro, Elly et al. published their research in Journal of Food Science and Technology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.COA of Formula: C30H26O12

Cocoa extract with high content of flavan 3-ols, procyanidins and methylxanthines was written by Acosta-Otalvaro, Elly;Valencia-Gallego, Wilmar;Mazo-Rivas, Juan Camilo;Garcia-Viguera, Cristina. And the article was included in Journal of Food Science and Technology in 2022.COA of Formula: C30H26O12 The following contents are mentioned in the article:

The health benefits of cocoa depend on the flavan 3-ols, procyanidins, and methylxanthines, which decrease from the early stages of cocoa bean processing. The objective of this research was to obtain a cocoa extract high in these compounds with (-)-epicatechin as the primary reference An evaluation of two pretreatments of cocoa beans with a control after harvesting was made: A (untreated/control), B (Frozen), and C (Polyphenol oxidase inhibition), all followed by dehydration at 45°C until obtaining a cocoa powder. In terms of (-)-epicatechin content, the best pretreatment was put on to a hydroalcoholic extraction Flavan 3-ols, procyanidins, methylxanthines, and total polyphenols content (TPC), were quantified in the cocoa powders and the hydroalcoholic extract The results showed that the control (A), significantly conserves the (-)-epicatechin (24.964 ± 0.400 mg/g) ca. 7 times more than conventionally sun-dried and fermented beans (3.742 ± 1.977 mg/g) ca. The hydroalcoholic extraction increased the (-)-epicatechin ca. 3 times more based on pretreatment A (84.738 mg/g). This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8COA of Formula: C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.COA of Formula: C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Semenov, Valentin A. et al. published their research in Journal of Physical Chemistry B in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.SDS of cas: 29106-49-8

Combined Computational NMR and Molecular Docking Scrutiny of Potential Natural SARS-CoV-2 Mpro Inhibitors was written by Semenov, Valentin A.;Krivdin, Leonid B.. And the article was included in Journal of Physical Chemistry B in 2022.SDS of cas: 29106-49-8 The following contents are mentioned in the article:

In continuation of the search for potential drugs that inhibit the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in this work, a combined approach based on the modeling of NMR chem. shifts and mol. docking is suggested to identify the possible suppressors of the main protease of this virus among a number of natural products of diverse nature. Primarily, with the aid of an artificial neural network, the problem of the reliable determination of the stereochem. structure of a number of studied compounds was solved. Complementary to the main goal of this study, theor. modeling of NMR spectral parameters made it feasible to perform a number of signal reassignments together with introducing some missing NMR data. Finally, mol. docking formalism was applied to the anal. of several natural products that could be chosen as prospective candidates for the role of potential inhibitors of the main protease. The results of this study are believed to assist in further research aimed at the development of specific drugs based on the natural products against COVID-19. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8SDS of cas: 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.SDS of cas: 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sioriki, Eleni et al. published their research in Food Chemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

The effect of cocoa alkalization on the non-volatile and volatile mood-enhancing compounds was written by Sioriki, Eleni;Tuenter, Emmy;de Walle, Davy Van;Lemarcq, Valerie;Cazin, Catherine S. J.;Nolan, Steven P.;Pieters, Luc;Dewettinck, Koen. And the article was included in Food Chemistry in 2022.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

Alkalization is a process to improve color, dispersibility and flavor of cocoa powder but is likely to have a neg. effect on the phytochems. Hereto, the impact of alkalization degree (none, medium and high) on the potential mood-enhancing compounds corresponding to the four levels of the mood pyramid model (flavanols, methylxanthines, biogenic amines and orosensory properties) was investigated. The phytochem. content, analyzed via UPLC-HRMS, showed reduction of specific potential mood-enhancing compounds upon alkalization, implying a decrease in bitterness and astringency. Moreover, volatile compounds anal. via HS-SPME-GC-MS indicated that alkalization reduced the levels of volatile compounds, responsible for acidity, fruity, floral and cocoa aromas. With respect to the orosensory properties, the cocoa powder palatability was suggested to be increased due to reduced acidity, bitterness, and astringency, while the desired volatile compounds were reduced. However, sensorial anal. is required to link the volatile results with the overall effect on the flavor perception. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts