Dailing, Eric A. et al. published their research in Soft Matter in 2015 | CAS: 109-17-1

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Related Products of 109-17-1

Photopolymerizable nanogels as macromolecular precursors to covalently crosslinked water-based networks was written by Dailing, Eric A.;Setterberg, Whitney K.;Shah, Parag K.;Stansbury, Jeffrey W.. And the article was included in Soft Matter in 2015.Related Products of 109-17-1 This article mentions the following:

We present a strategy for directly and efficiently polymerizing aqueous dispersions of reactive nanogels into covalently crosslinked polymer networks with properties that are determined by the initial chem. and phys. nanogel structure. This technique can extend the range of achievable properties and architectures for networks formed in solution, particularly in water where monomer selection for direct polymerization and the final network properties are quite limited. Nanogels were initially obtained from a solution polymerization of a hydrophilic monomethacrylate and either a hydrophilic PEG-based dimethacrylate or a more hydrophobic urethane dimethacrylate, which produced globular particles with diameters of 10-15 nm with remarkably low polydispersity in some cases. Networks derived from a single type of nanogel or a blend of nanogels with different chemistries when dispersed in water gelled within minutes when exposed to low intensity UV light. Modifying the nanogel structure changes both covalent and non-covalent secondary interactions in the crosslinked networks and reveals critical design criteria for the development of networks from highly internally branched, nanoscale prepolymer precursors. In the experiment, the researchers used many compounds, for example, ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1Related Products of 109-17-1).

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Related Products of 109-17-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Watabe, Takuma et al. published their research in Macromolecules (Washington, DC, United States) in 2022 | CAS: 109-17-1

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Application In Synthesis of ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate)

Polymer-Network Toughening and Highly Sensitive Mechanochromism via a Dynamic Covalent Mechanophore and a Multinetwork Strategy was written by Watabe, Takuma;Aoki, Daisuke;Otsuka, Hideyuki. And the article was included in Macromolecules (Washington, DC, United States) in 2022.Application In Synthesis of ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) This article mentions the following:

Multinetwork (MN) elastomers exhibit outstanding mech. properties that arise from the sacrificial first network (FN). Here, we report the mech. and mechanochromic properties of an MN elastomer with a difluorenylsuccinonitrile (DFSN) moiety incorporated into the crosslinking points of its FN. DFSN is a mechanochromophore that affords stable, pink radical intermediates upon exposure to mech. stimuli. We distinctly demonstrated that the replacement of a conventional cross-linker by a weaker cross-linker does have a direct effect on the stress-strain behavior of elastomers to improve fracture toughness. The toughening mechanism of the DFSN-containing MN elastomers was revealed through a highly sensitive and quant. anal. of the mech. activated stable radicals by ESR spectroscopy. We also clarified that the MN strategy is an effective technique to achieve high activation of the mechanophores at a lower threshold strain. In the experiment, the researchers used many compounds, for example, ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1Application In Synthesis of ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate)).

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Application In Synthesis of ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate)

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Szterner, Piotr et al. published their research in Bioinorganic Chemistry and Applications in 2022 | CAS: 5743-47-5

Calcium 2-hydroxypropanoate pentahydrate (cas: 5743-47-5) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Category: alcohols-buliding-blocks

The synthesis of hydroxyapatite by hydrothermal process with calcium lactate pentahydrate: the effect of reagent concentrations, pH, temperature, and pressure was written by Szterner, Piotr;Biernat, Monika. And the article was included in Bioinorganic Chemistry and Applications in 2022.Category: alcohols-buliding-blocks This article mentions the following:

Hydroxyapatite and other calcium phosphates in the form of whiskers are lately widely considered as fillers for biocomposites due to their special biol. and reinforcing properties. Depending on the method of synthesis, apatite whiskers of various sizes and phase composition can be obtained. In our work, hydroxyapatite (HAp) whiskers were successfully prepared in reaction between calcium lactate pentahydrate and orthophosphoric acid. The advantage of the proposed technique is the simple but precise control of the HAp crystal morphol. and high product purity which is necessary for biomedical applications. The effect of reagent concentrations, pH, reaction temperature, and pressure on HAp whiskers’ morphol. and composition was investigated. In the result, we obtained hydroxyapatite of different morphol. such as whiskers, hexagonal rods, and nanorods. The products were characterized by SEM, XRD, and FTIR. In this work, the synthesis of HAp whiskers by direct decomposition of calcium lactate pentahydrate chelates under hydrothermal conditions was showed for the first time. In the experiment, the researchers used many compounds, for example, Calcium 2-hydroxypropanoate pentahydrate (cas: 5743-47-5Category: alcohols-buliding-blocks).

Calcium 2-hydroxypropanoate pentahydrate (cas: 5743-47-5) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cox, P. et al. published their research in Climacteric in 2019 | CAS: 128607-22-7

(Z)-2-(4-(4-Chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (cas: 128607-22-7) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application of 128607-22-7

Vulvovaginal atrophy in women after cancer was written by Cox, P.;Panay, N.. And the article was included in Climacteric in 2019.Application of 128607-22-7 This article mentions the following:

The number of women surviving longer after a cancer diagnosis is increasing. This means that more awareness regarding their health is required. This review will focus on vulvovaginal atrophy (VVA)/genitourinary syndrome of menopause, one of the most distressing adverse iatrogenic effects of the menopause, secondary to cancer therapies. The cancer therapies themselves, such as radiotherapy, chemotherapy, and surgery, have a direct impact on the lower genital tract which interplays with the ensuing hypoestrogenic state of the menopause. Symptoms of VVA are still under-reported and undertreated as neither clinicians nor patients are forthcoming in discussing the problem, despite its profound neg. impact on quality of life. In terms of treatment of VVA, this review will look at the use of various options, including estrogen post cancer diagnosis, as well as considering newer emerging therapies such as dehydroepiandrosterone, ospemifene, and laser. The care of a woman post cancer diagnosis should be a multidisciplinary responsibility. However, further research is required into emerging treatment options as well as long-term safety data, to ensure all health-care providers and women are fully informed and confident to effectively address the impact of VVA post cancer diagnosis. In the experiment, the researchers used many compounds, for example, (Z)-2-(4-(4-Chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (cas: 128607-22-7Application of 128607-22-7).

(Z)-2-(4-(4-Chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (cas: 128607-22-7) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application of 128607-22-7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Orakdogen, Nermin et al. published their research in Polymer Degradation and Stability in 2017 | CAS: 109-17-1

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Synthetic Route of C16H26O7

Poly(Hydroxypropyl methacrylate-co-glycidyl methacrylate): Facile synthesis of well-defined hydrophobic gels containing hydroxy-functional methacrylates was written by Orakdogen, Nermin;Sanay, Berran. And the article was included in Polymer Degradation and Stability in 2017.Synthetic Route of C16H26O7 This article mentions the following:

A range of well-defined hydrophobic hydroxy-functional methacrylate-based gels has been synthesized by free-radical crosslinking copolymerization of the monomers Hydroxypropyl methacrylate (HPMA) and Glycidyl methacrylate (GMA). Particularly, the effect of the hydrophobic functional groups of the comonomer GMA on the elasticity and swelling properties was investigated in order to understand the exact interactions and the consequent changes in the phys. characteristics of poly(Hydroxypropyl methacrylate-co-glycidyl methacrylate) P(HPMA-co-GMA) hydrogels as well as cryogels. In addition, measuring and understanding how to control the mech. response of the resulting gels which usually refers to the resistance to failure by fracture or excessive deformation can help the targeted design of specific applications with extended functionality. In the light of the exptl. findings, it was suggested that the studied system with the monomers HPMA and GMA containing both acrylic and epoxy groups provides the design and performance versatility required for the most demanding coating and resin applications. In the experiment, the researchers used many compounds, for example, ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1Synthetic Route of C16H26O7).

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Synthetic Route of C16H26O7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Forbes, D. C. et al. published their research in Polymer in 2013 | CAS: 109-17-1

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Related Products of 109-17-1

Differences in molecular structure in cross-linked polycationic nanoparticles synthesized using ARGET ATRP or UV-initiated polymerization was written by Forbes, D. C.;Peppas, N. A.. And the article was included in Polymer in 2013.Related Products of 109-17-1 This article mentions the following:

This work compares material properties of polycationic nanoparticles synthesized using the techniques of UV-initiated polymerization or ARGET ATRP and relates differences in material properties to differences in mol. structure. The nanoparticles are based on the pH-responsive monomer 2-(diethylamino)ethyl methacrylate (DEAEMA) copolymerized with poly(ethylene glycol) Me ether methacrylate (PEGMA), tert-Bu methacrylate (tBMA), and tetraethylene glycol dimethacrylate (TEGDMA) in a surfactant-stabilized monomer-in-water emulsion to form cross-linked nanoscale hydrogels. ARGET ATRP resulted in a narrower distribution of mol. weight for linear analogs of the polycationic nanoparticles. In addition, ARGET ATRP formulations showed a sharper glass transition than UV-initiated formulations, indicating increased homogeneity. These networks could be used as drug delivery carriers or for other nanogel applications that would benefit from polycationic nanoparticles with high homogeneity. In the experiment, the researchers used many compounds, for example, ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1Related Products of 109-17-1).

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Related Products of 109-17-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Djukanovic, Stefana et al. published their research in Industrial Crops and Products in 2020 | CAS: 109-17-1

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Computed Properties of C16H26O7

Antistaphylococcal and biofilm inhibitory activities of Frangula alnus bark ethyl-acetate extract was written by Djukanovic, Stefana;Cvetkovic, Stefana;Loncarevic, Branka;Ljesevic, Marija;Nikolic, Biljana;Simin, Natasa;Bekvalac, Kristina;Kekic, Dusan;Mitic-Culafic, Dragana. And the article was included in Industrial Crops and Products in 2020.Computed Properties of C16H26O7 This article mentions the following:

Since that we are facing with a serious problem of bacterial resistance it is necessary to find a new antibacterial agents in fight with it. Frangula alnus is traditionally used plant but its antibiofilm potential is poorly investigated. The aim of the study was to investigate antibiofilm activity of F. alnus ethyl-acetate extract (FA) toward S. aureus ATCC strains and clin. isolates as well as its influence on respiration in planktonic and biofilm form. The qual. GCxGC-MS and quant. LC-MS/MS anal. revealed that FA extract was rich in phenols and flavonoids and emodin, chatechin, and ester 4-ethoxy benzoic acid were the most dominant components. Results obtained through microdillution assay showed that FA possesses strong antibacterial activity. Furthermore, crystal violet staining of biofilm biomass demonstrated that extract had strong effect on biofilm formation of all tested strains while effect on preformed biofilms was less pronounced. The effect on biofilm was confirmed with SEM where the changes in biofilm structure were noticed. The activity of extract on the consumption of O2 and production of CO2 was monitored using the Micro-Oxymax respirometer. Interestingly, respiration of the most strains was decreased in planktonic form as well as in biofilms. Results obtained in this study are a good basis for further research in order to discover the mechanism of action of the FA extract on connection between biofilm and respiration. In the experiment, the researchers used many compounds, for example, ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1Computed Properties of C16H26O7).

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Computed Properties of C16H26O7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Whicker, Margaret et al. published their research in American journal of obstetrics and gynecology in 2017 | CAS: 128607-22-7

(Z)-2-(4-(4-Chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (cas: 128607-22-7) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.HPLC of Formula: 128607-22-7

Management of sexuality, intimacy, and menopause symptoms in patients with ovarian cancer. was written by Whicker, Margaret;Black, Jonathan;Altwerger, Gary;Menderes, Gulden;Feinberg, Jacqueline;Ratner, Elena. And the article was included in American journal of obstetrics and gynecology in 2017.HPLC of Formula: 128607-22-7 This article mentions the following:

Issues of sexuality, intimacy, and early menopause significantly impact the quality of life of patients following the diagnosis and treatment of ovarian cancer. These are undertreated problems. Successful treatment requires the provider’s awareness of the problem, ability to identify it, and willingness to treat it. Unfortunately many providers do not address these issues in the pretreatment or perioperative period. Furthermore, patients do not often alert their providers to their symptoms. While systemic hormone therapy may improve many of the issues, they are not appropriate for all patients given their action on estrogen receptors. However, other nonhormonal treatments exist including selective serotonin reuptake inhibitors, antiepileptics, natural remedies, and pelvic floor physical therapy. In addition psychological care and the involvement of the partner can be helpful in managing the sexual health concerns of these patients. At the time of diagnosis or at initial consultation, women should be informed of the potential physiologic, hormonal, and psychosocial effects of ovarian cancer on sexuality and that there is a multimodal approach to dealing with symptoms. In the experiment, the researchers used many compounds, for example, (Z)-2-(4-(4-Chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (cas: 128607-22-7HPLC of Formula: 128607-22-7).

(Z)-2-(4-(4-Chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (cas: 128607-22-7) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.HPLC of Formula: 128607-22-7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Komm, Barry S. et al. published their research in Maturitas in 2012 | CAS: 128607-22-7

(Z)-2-(4-(4-Chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (cas: 128607-22-7) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Formula: C24H23ClO2

An update on selective estrogen receptor modulators for the prevention and treatment of osteoporosis was written by Komm, Barry S.;Chines, Arkadi A.. And the article was included in Maturitas in 2012.Formula: C24H23ClO2 This article mentions the following:

Several selective estrogen receptor modulators are in clin. development for postmenopausal osteoporosis. Bazedoxifene has shown significant reductions in vertebral and non-vertebral (in higher-risk women) fracture risk, with no evidence of breast or endometrial stimulation. Lasofoxifene has demonstrated significant reductions in vertebral and non-vertebral fracture risk, but has been associated with endometrial/uterine effects. Both selective estrogen receptor modulators were generally safe and well tolerated but have been associated with some “class effects” (e.g., hot flushes, venous thromboembolic events). A tissue selective estrogen complex partnering bazedoxifene with conjugated estrogens is under clin. investigation for the treatment of menopausal symptoms and osteoporosis prevention. Future directions in selective estrogen receptor modulator research include ospemifene and RAD 1901. In the experiment, the researchers used many compounds, for example, (Z)-2-(4-(4-Chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (cas: 128607-22-7Formula: C24H23ClO2).

(Z)-2-(4-(4-Chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (cas: 128607-22-7) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Formula: C24H23ClO2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Bates, Jeffrey S. et al. published their research in MRS Online Proceedings Library in 2013 | CAS: 109-17-1

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Safety of ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate)

Smart hydrogels designed for use in microfabricated sensor arrays was written by Bates, Jeffrey S.;Cho, Seung Hei;Tathireddy, Prashant;Rieth, Loren W.;Magda, Jules J.. And the article was included in MRS Online Proceedings Library in 2013.Safety of ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) This article mentions the following:

Hydrogels are considered smart materials because they respond to environmental stimuli. Sensors that monitor the body’s pH levels would be helpful for doctors to determine the severity of a patient’s condition, especially if they exhibit signs of shock. The motivation of this project is to create a biomedical device that can be worn sublingually or implanted into the body to help doctors with diagnosing a patient’s condition. The magnitude of the swelling/deswelling behavior can be measured by placing a sample of the hydrogel in a piezoresistive sensor. The degree of swelling/deswelling is directly proportional to the change in pH of the aqueous solution it is placed in. In this study, a variety of compositions of pH responsive hydrogels were designed and tested to determine the response time and magnitude for use in both macro and micro sensor arrays. This pressure sensor has been designed for use with thinner gels than have been used in the past. The results for swelling time and magnitude were compared to determine the effect of the thickness of the hydrogel samples on the swelling/deswelling kinetics of the material in order to find the appropriate composition, thickness and device that will yield the desired response rate and sensitivity. In the experiment, the researchers used many compounds, for example, ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1Safety of ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate)).

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Safety of ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate)

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts