Ghafuri, Hossein et al. published their research in Scientific Reports in 2022 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: (4-Chlorophenyl)methanol

Copper(II)-β-cyclodextrin immobilized on graphitic carbon nitride nanosheets as a highly effective catalyst for tandem oxidative amidation of benzylic alcohols was written by Ghafuri, Hossein;Rashidizadeh, Afsaneh;Gorab, Mostafa Ghafori;Jafari, Ghazaleh. And the article was included in Scientific Reports in 2022.Recommanded Product: (4-Chlorophenyl)methanol This article mentions the following:

In this study, an efficient catalyst based on graphitic carbon nitride nanosheets (CN) and copper(II) supported β-cyclodextrin (βCD/Cu(II)) was synthesized and used for tandem oxidative amidation of benzylic alcs. using amine hydrochloride salts to form aryl-amides R1C(O)NR2R3 [R1 = H, 4-Cl, 4-OMe, etc.; R2 = H, Ph, Bn, etc.]. In this regard, CN was functionalized by β-CD/Cu(II) via 1,3-dibromopropane linker (CN-Pr-β-CD/Cu(II)). The prepared catalyst was characterized using FT-IR, XRD, FE-SEM, EDS, TGA, ICP-OES, BET and TEM analyses. CN-Pr-β-CD/Cu(II) could be recycled and reused five times without significant reduction in reaction efficiency. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Recommanded Product: (4-Chlorophenyl)methanol).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: (4-Chlorophenyl)methanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kondoh, Azusa et al. published their research in Chemistry – A European Journal in 2022 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Quality Control of (4-Chlorophenyl)methanol

Synthesis of 2,2-Disubstituted 2H-Chromenes through Carbon-Carbon Bond Formation Utilizing a [1,2]-Phospha-Brook Rearrangement under Broensted Base Catalysis was written by Kondoh, Azusa;Terada, Masahiro. And the article was included in Chemistry – A European Journal in 2022.Quality Control of (4-Chlorophenyl)methanol This article mentions the following:

A new methodol. for the synthesis of 2,2-disubstituted 2H-chromenes was developed by utilizing the [1,2]-phospha-Brook rearrangement under Broensted base catalysis. Phosphazene P2-tBu efficiently catalyzed the addition reaction of 4H-chromen-4-ols containing a diethoxyphosphoryl group with α,β-unsaturated ketones, which involved the catalytic generation of a carbanion through the [1,2]-phospha-Brook rearrangement and subsequent conjugate addition at the 2-position to afford adducts possessing an alkenylphosphate moiety in a highly diastereoselective manner. Further transformation of the adducts based on a nickel-catalyzed cross-coupling reaction with arylzinc reagents provided densely functionalized 2,2-disubstituted 2H-chromenes. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Quality Control of (4-Chlorophenyl)methanol).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Quality Control of (4-Chlorophenyl)methanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jin, Yushu et al. published their research in ChemSusChem in 2022 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Formula: C7H7ClO

Visible-Light-Enabled Carboxylation of Benzyl Alcohol Derivatives with CO2 Using a Palladium/Iridium Dual Catalyst was written by Jin, Yushu;Toriumi, Naoyuki;Iwasawa, Nobuharu. And the article was included in ChemSusChem in 2022.Formula: C7H7ClO This article mentions the following:

A highly efficient carboxylation of benzyl alc. derivatives with CO2 using a palladium/iridium dual catalyst under visible-light irradiation was developed. A wide range of benzyl alc. derivatives was employed to provide benzylic carboxylic acids in moderate to high yields. Mechanistic studies indicated that the oxidative addition of benzyl alc. derivatives was possibly the rate-determining-step. It was also found that a switchable site-selective carboxylation between benzylic C-O and aryl C-Cl moieties could be achieved simply by changing the palladium catalyst. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Formula: C7H7ClO).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Formula: C7H7ClO

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Javaherian, Mohammad et al. published their research in Journal of the Iranian Chemical Society in 2022 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Product Details of 873-76-7

Nano-silica melamine trisulfonic acid as an efficient and reusable heterogeneous catalyst in esterification reactions was written by Javaherian, Mohammad;Latifi, Saeideh;Heidarizadeh, Fariba. And the article was included in Journal of the Iranian Chemical Society in 2022.Product Details of 873-76-7 This article mentions the following:

The use of nano-silica melamine trisulfonic acid as a reusable heterogeneous solid acid catalyst in the esterification reaction of carboxylic acids and alcs. is reported. The reaction conditions were optimized by testing temperature, each component of catalyst, feedstock ratios as well as load of catalyst. The synthesized catalyst was characterized by X-ray diffraction, SEM, Fourier transform IR spectroscopy, and thermogravimetric anal. techniques. The results showed that nano-silica melamine trisulfonic acid was an efficient dehydrating agent in the condensing reactions between different kinds of aliphatic and aromatic carboxylic acids and alcs. The method was simple, rapid, straightforward, catalyst reusability, and holds potential for further application in acid-catalyzed organic synthesis and industrial requirements. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Product Details of 873-76-7).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Product Details of 873-76-7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yin, Shenxiang et al. published their research in Journal of Catalysis in 2022 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Product Details of 873-76-7

Acceptorless dehydrogenation of primary alcohols to carboxylic acids by self-supported NHC-Ru single-site catalysts was written by Yin, Shenxiang;Zheng, Qingshu;Chen, Jie;Tu, Tao. And the article was included in Journal of Catalysis in 2022.Product Details of 873-76-7 This article mentions the following:

The acceptorless dehydrogenation of diverse aromatic and aliphatic primary alcs. to corresponding carboxylic acids was accomplished by self-supported NHC-Ru single-site catalysts under mild reaction conditions. Besides broad substrates with excellent activity, selectivity and good tolerance to sensitive functional groups, the solid single-site catalyst could be recovered and reused for more than 20 runs without deactivation. Remarkably, up to 1.8 x 104 turnover numbers could be achieved by this newly developed sustainable protocol in gram scale at low catalyst loading, highlighting its potential in industry. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Product Details of 873-76-7).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Product Details of 873-76-7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kumar, Ravi et al. published their research in Chemistry – An Asian Journal in 2022 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Safety of (4-Chlorophenyl)methanol

Catalytic Hydroboration and Reductive Amination of Carbonyl Compounds by HBpin using a Zinc Promoter was written by Kumar, Ravi;Rawal, Parveen;Banerjee, Indrani;Pada Nayek, Hari;Gupta, Puneet;Panda, Tarun K.. And the article was included in Chemistry – An Asian Journal in 2022.Safety of (4-Chlorophenyl)methanol This article mentions the following:

The chemoselective hydroboration of aldehydes and ketones, catalyzed by Zinc(II) complexes [κ2-(PyCH:NR)ZnX2] (1, R = CPh3, X = Cl; 2, R = 2,6-iPr2C6H3, X = I), by pinacolborane (HBpin) at ambient temperature and under solvent-free conditions, which produced the corresponding borate esters in high yield, is reported. Zinc metal complexes 1 and 2 were derived in 80-90% yield from the reaction of iminopyridine [PyCH:NR] with anhydrous zinc dichloride in dichloromethane at room temperature The solid-state structures of both zinc complexes were confirmed using X-ray crystallog. Zinc complex 1 was also used as a competent pre-catalyst in the reductive amination of carbonyl compounds with HBpin under mild and solvent-free conditions to afford a high yield (up to 97%) of the corresponding secondary amines. The wider substrate scope of both reactions was explored. Catalytic protocols using zinc as a pre-catalyst demonstrated an atom-economic and green method with diverse substrates bearing excellent functional group tolerance. Computational studies established a plausible mechanism for catalytic hydroboration. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Safety of (4-Chlorophenyl)methanol).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Safety of (4-Chlorophenyl)methanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Bolduc, Trevor G. et al. published their research in Journal of Organic Chemistry in 2022 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.HPLC of Formula: 873-76-7

Thionyl fluoride-mediated one-pot substitutions and reductions of carboxylic acids was written by Bolduc, Trevor G.;Lee, Cayo;Chappell, William P.;Sammis, Glenn M.. And the article was included in Journal of Organic Chemistry in 2022.HPLC of Formula: 873-76-7 This article mentions the following:

Thionyl fluoride (SOF2) is an underutilized reagent that is yet to be extensively studied for its synthetic applications. We previously reported that it is a powerful reagent for both the rapid syntheses of acyl fluorides and for one-pot peptide couplings, but the full scope of these nucleophilic acyl substitutions had not been explored. Herein, we report one-pot thionyl fluoride-mediated syntheses of peptides and amides (35 examples, 45-99% yields) that were not explored in our previous study. The scope of thionyl fluoride-mediated nucleophilic acyl substitutions was also expanded to encompass esters (24 examples, 64-99% yields) and thioesters (11 examples, 24-96% yields). In addition, we demonstrate that the scope of thionyl fluoride-mediated one-pot reactions can be extended beyond nucleophilic acyl substitutions to mild reductions of carboxylic acids using NaBH4 (13 examples, 33-80% yields). In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7HPLC of Formula: 873-76-7).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.HPLC of Formula: 873-76-7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Shang, Feng-Kang et al. published their research in ACS Physical Chemistry Au in 2022 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Product Details of 873-76-7

Nanoscale Assembly of CdS/BiVO4 Hybrids for Coupling Selective Fine Chemical Synthesis and Hydrogen Production under Visible Light was written by Shang, Feng-Kang;Qi, Ming-Yu;Tan, Chang-Long;Tang, Zi-Rong;Xu, Yi-Jun. And the article was included in ACS Physical Chemistry Au in 2022.Product Details of 873-76-7 This article mentions the following:

Simultaneously utilizing photogenerated electrons and holes in one photocatalytic system to synthesize value-added chems. and clean hydrogen (H2) energy meets the development requirements of green chem. Herein, we report a binary material of CdS/BiVO4 combining one-dimensional (1D) CdS nanorods (NRs) with two-dimensional (2D) BiVO4 nanosheets (NSs) constructed through a facile electrostatic self-assembly procedure for the selectively photocatalytic oxidation of aromatic alcs. integrated with H2 production, which exhibits significantly enhanced photocatalytic performance. Within 2 h, the conversion of aromatic alcs. over CdS/BiVO4-25 was approx. 9-fold and 40-fold higher than that over pure CdS and BiVO4, resp. The remarkably improved photoactivity of CdS/BiVO4 hybrids is mainly ascribed to the Z-scheme charge separation mechanism in the 1D/2D heterostructure derived from the interface contact between CdS and BiVO4, which not only facilitates the separation and transfer of charge carriers, but also maintains the strong reducibility of photogenerated electrons and strong oxidizability of photogenerated holes. It is anticipated that this work will further stimulate interest in the rational design of 1D/2D Z-scheme heterostructure photocatalysts for the selective fine chem. synthesis integrated with H2 evolution. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Product Details of 873-76-7).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Product Details of 873-76-7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Dong, Xiuli et al. published their research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2023 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Recommanded Product: 873-76-7

Molten salt-induction of geometrically deformed ruthenium single atom catalysts with high performance for aerobic oxidation of alcohols was written by Dong, Xiuli;Jia, Yufei;Zhang, Mingyang;Ji, Siqi;Leng, Leipeng;Hugh Horton, J.;Xu, Chang;He, Cheng;Tan, Qiang;Zhang, Jiangwei;Li, Zhijun. And the article was included in Chemical Engineering Journal (Amsterdam, Netherlands) in 2023.Recommanded Product: 873-76-7 This article mentions the following:

Recently, construction of single atom catalysts (SACs) for heterogeneous organic transformations has attracted great interest, but accomplishing high selectivity for a specific product under mild conditions remains challenging. Herein, we report a facile molten salt-induced strategy for creating Ru single atoms anchored onto a geometrically deformed nitrogen-doped carbon (Ru1/NC) support. This Ru catalyst is characterized by a range of methods, including advanced electron microscopy and X-ray absorption spectroscopy. The results show that the Ru single atom catalyst is highly effective for benzyl alc. oxidation reaction, achieving an exceptional catalytic efficiency (1 atm O2 @ 90°C) with more than 99% selectivity for benzaldehyde under nearly 100% conversion, along with a high initial turnover frequency up to 1213 h-1. Moreover, excellent recyclability and substrate tolerance ability are validated. D. functional theory calculations further indicate that the high catalytic reactivity stems from strong electronic metal-support interactions. This work provides a new avenue in designing single atom catalysts at the at. level for organic transformations. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Recommanded Product: 873-76-7).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Recommanded Product: 873-76-7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Saharan, Ritu et al. published their research in Journal of the Indian Chemical Society in 2022 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Category: alcohols-buliding-blocks

Electro organic synthesis as green and sustainable approach for synthesis of chloro substituted benzyl alcohols was written by Saharan, Ritu. And the article was included in Journal of the Indian Chemical Society in 2022.Category: alcohols-buliding-blocks This article mentions the following:

A green and sustainable approach for synthesis of chloro substituted benzyl alcs. has been established. In present research paper cyclic voltammetry study followed by constant current electrolysis and characterization of synthesized 2-chlorobenzyl alc., 3-chlorobenzyl alc., 4-chlorobenzyl alc. and 2,4-dichlorobenzyl alc. has been reported. Cyclic voltammetry measurements have been employed to setup optimum conditions for electrolysis and to find out electrochem. nature of various Chloro substituted benzaldehydes. Then these results have been judiciary used to carry out electrochem. reduction of various chloro substituted benzaldehydes using constant current electrolysis. Influence of scan rate and pH on reduction peaks has also been investigated referring irreversible electron transfer phenomenon in basic medium. The kinetic parameters for reduction reactions have been estimated showing the process under the influence of diffusion control. This has a scientific achievement in terms of the obtained products and their derivatives which are industrially and pharmaceutically significant chems. owing to their huge applications in petrochem. industries and medical sectors. Throat lozenges containing dichlorobenzyl alc. (DCBA) are used for treatment of respiratory tract infections. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Category: alcohols-buliding-blocks).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts