Arcinas, Arthur’s team published research in Journal of Proteome Research in 8 | CAS: 85618-21-9

Journal of Proteome Research published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Category: alcohols-buliding-blocks.

Arcinas, Arthur published the artcileCell Surface and Secreted Protein Profiles of Human Thyroid Cancer Cell Lines Reveal Distinct Glycoprotein Patterns, Category: alcohols-buliding-blocks, the publication is Journal of Proteome Research (2009), 8(8), 3958-3968, database is CAplus and MEDLINE.

Cell surface proteins have been shown to be effective therapeutic targets. In addition, shed forms of these proteins and secreted proteins can serve as biomarkers for diseases, including cancer. Thus, identification of cell surface and secreted proteins has been a prime area of interest in the proteomics field. Most cell surface and secreted proteins are known to be glycosylated, and therefore, a proteomics strategy targeting these proteins was applied to obtain proteomic profiles from various thyroid cancer cell lines that represent the range of thyroid cancers of follicular cell origin. In this study, the authors oxidized the carbohydrates of secreted proteins and those on the cell surface with periodate and isolated them via covalent coupling to hydrazide resin. The glycoproteins obtained were identified from tryptic peptides and N-linked glycopeptides released from the hydrazide resin using two-dimensional liquid chromatog.-tandem mass spectrometry in combination with the gas phase fractionation. Thyroid cancer cell lines derived from papillary thyroid cancer (TPC-1), follicular thyroid cancer (FTC-133), Hurthle cell carcinoma (XTC-1), and anaplastic thyroid cancer (ARO and DRO-1) were evaluated. An average of 150 glycoproteins were identified per cell line, of which more than 57% are known cell surface or secreted glycoproteins. The usefulness of the approach for identifying thyroid cancer associated biomarkers was validated by the identification of glycoproteins (e.g., CD44, galectin 3 and metalloproteinase inhibitor 1) that have been useful markers for thyroid cancer. In addition to glycoproteins that are commonly expressed by all of the cell lines, the authors identified others that are only expressed in the more well-differentiated thyroid cancer cell lines (follicular, Hurthle cell and papillary), or by cell lines derived from undifferentiated tumors that are uniformly fatal forms of thyroid cancer (i.e., anaplastic). On the basis of the results obtained, a set of glycoprotein biomarker candidates for thyroid cancer is proposed.

Journal of Proteome Research published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Category: alcohols-buliding-blocks.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

McDonald, Claudia A.’s team published research in Molecular and Cellular Proteomics in 8 | CAS: 85618-21-9

Molecular and Cellular Proteomics published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Computed Properties of 85618-21-9.

McDonald, Claudia A. published the artcileCombining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome, Computed Properties of 85618-21-9, the publication is Molecular and Cellular Proteomics (2009), 8(2), 287-301, database is CAplus and MEDLINE.

Identification of glycosylated proteins, especially those in the plasma membrane, has the potential of defining diagnostic biomarkers and therapeutic targets as well as increasing the understanding of changes occurring in the glycoproteome during normal differentiation and disease processes. Although many cellular proteins are glycosylated they are rarely identified by mass spectrometric anal. (e.g. shotgun proteomics) of total cell lysates. Therefore, methods that specifically target glycoproteins are necessary to facilitate their isolation from total cell lysates prior to their identification by mass spectrometry-based anal. To enrich for plasma membrane glycoproteins the methods must selectively target characteristics associated with proteins within this compartment. The authors demonstrate that the application of two methods, one that uses periodate to label glycoproteins of intact cells and a hydrazide resin to capture the labeled glycoproteins and another that targets glycoproteins with sialic acid residues using lectin affinity chromatog., in conjunction with liquid chromatog.-tandem mass spectrometry is effective for plasma membrane glycoprotein identification. The authors demonstrate that this combination of methods dramatically increases coverage of the plasma membrane proteome (more than one-half of the membrane glycoproteins were identified by the two methods uniquely) and also results in the identification of a large number of secreted glycoproteins. The authors’ approach avoids the need for subcellular fractionation and utilizes a simple detergent lysis step that effectively solubilizes membrane glycoproteins. The plasma membrane localization of a subset of proteins identified was validated, and the dynamics of their expression in HeLa cells was evaluated during the cell cycle. Results obtained from the cell cycle studies demonstrate that plasma membrane protein expression can change up to 4-fold as cells transit the cell cycle and demonstrate the need to consider such changes when carrying out quant. proteomics comparison of cell lines.

Molecular and Cellular Proteomics published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Computed Properties of 85618-21-9.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Kaneko, Naoki’s team published research in Proceedings of the Japan Academy, Series B: Physical and Biological Sciences in 90 | CAS: 85618-21-9

Proceedings of the Japan Academy, Series B: Physical and Biological Sciences published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Formula: C14H28O5S.

Kaneko, Naoki published the artcileIdentification and quantification of amyloid beta-related peptides in human plasma using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Formula: C14H28O5S, the publication is Proceedings of the Japan Academy, Series B: Physical and Biological Sciences (2014), 90(3), 104-117, database is CAplus and MEDLINE.

Proteolytic processing of the amyloid precursor protein (APP) by β-secretase and γ-secretase leads to the generation and deposition of amyloid β (Aβ) in Alzheimer’s disease (AD). N-terminally or C-terminally truncated Aβ variants have been found in human cerebrospinal fluid and cultured cell media using immunoprecipitation and mass spectrometry. Unfortunately, the profile of plasma Aβ variants has not been revealed due to the difficulty of isolating Aβ from plasma. We present here for the first time studies of Aβ and related peptides in human plasma. Twenty-two Aβ-related peptides including novel peptides truncated before the β-secretase site were detected in human plasma and 20 of the peptides were identified by tandem mass spectrometry. Using an internal standard, we developed a quant. assay for the Aβ-related peptides and demonstrated plasma dilution linearity and the precision required for their quantitation. The present method should enhance the understanding of APP processing and clearance in AD progression.

Proceedings of the Japan Academy, Series B: Physical and Biological Sciences published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Formula: C14H28O5S.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Barret, Laurie-Anne’s team published research in Journal of Chromatography A in 1281 | CAS: 85618-21-9

Journal of Chromatography A published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Application of (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol.

Barret, Laurie-Anne published the artcileA new high-performance thin layer chromatography-based assay of detergents and surfactants commonly used in membrane protein studies, Application of (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, the publication is Journal of Chromatography A (2013), 135-141, database is CAplus and MEDLINE.

The hydrophobic nature of membrane proteins (MPs) necessitates the use of detergents for their extraction, solubilization and purification Because the concentration of amphiphiles is crucial in the crystallization process, detergent quantification is essential to routine anal. Here we describe a quant. high-performance thin-layer chromatog. (HPTLC) method we developed for the detection of small quantities of detergent bound to solubilized MPs. After optimization of aqueous deposit conditions, we show that most detergents widely used in membrane protein crystallog. display distinctive mobilities in a mixture of dichloromethane, methanol and acetic acid 32:7.6:0.4 (volume/volume/v). Migration and derivatization conditions were optimized with n-dodecyl-β-D-maltoside (DDM), the most popular detergent for membrane protein crystallization A linear calibration curve very well fits our data from 0.1 to 1.6 μg of DDM in water with a limit of detection of 0.05 μg. This limit of detection is the best achieved to date for a routine detergent assay, being not modified by the addition of NaCl, commonly used in protein buffers. With these chromatog. conditions, no prior treatment is required to assess the quantities of detergent bound to purified MPs, thus enabling the quantification of close structure detergents via a single procedure. This HPTLC method, which is fast and requires low sample volume, is fully suitable for routine measurements.

Journal of Chromatography A published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Application of (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Itoh, Hiroshi’s team published research in Tetrahedron Letters in 58 | CAS: 85618-21-9

Tetrahedron Letters published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Name: (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol.

Itoh, Hiroshi published the artcileUV absorption of n-alkyl 1-thio-β-D-glucopyranosides and its utilization in chromatographic separation, Name: (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, the publication is Tetrahedron Letters (2017), 58(37), 3678-3680, database is CAplus.

The UV absorption of n-alkyl β-D-glucopyranosides was not used so far for their detection which is usually performed by the refractive index detector. The authors demonstrate the HPLC separation of several n-alkyl β-D-glucopyranosides with linear gradient by using UV detector and support the authors’ findings with time-dependent d. functional theory calculations

Tetrahedron Letters published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Name: (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Ganapathy, Srividya’s team published research in Biochimica et Biophysica Acta, Biomembranes in 1862 | CAS: 85618-21-9

Biochimica et Biophysica Acta, Biomembranes published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, HPLC of Formula: 85618-21-9.

Ganapathy, Srividya published the artcileMembrane matters: The impact of a nanodisc-bilayer or a detergent microenvironment on the properties of two eubacterial rhodopsins, HPLC of Formula: 85618-21-9, the publication is Biochimica et Biophysica Acta, Biomembranes (2020), 1862(2), 183113, database is CAplus and MEDLINE.

Multi-spanning membrane proteins usually require solubilization to allow proper purification and characterization, which generally impairs their structural and functional integrity. We have tested the efficacy of several commonly used detergents and membrane-mimicking nanodiscs with respect to solubilization, spectral properties, thermal stability and oligomeric profile of two membrane proteins from the eubacterial rhodopsin family, green proteorhodopsin (PR) and Gloeobacter violaceus rhodopsin (GR). Good solubilization was observed for the detergents Triton X-100 and dodecylphosphocholine (DPC), but DPC in particular strongly affected the thermal stability of PR and especially GR. The least deleterious effects were obtained with n-dodecyl-β-D-maltopyranoside (DDM) and octyl glucose neopentyl glycol (OGNG), which adequately stabilized the native oligomeric and monomeric state of PR and GR, resp. The transition from the oligomeric to the monomeric state is accompanied by a small red-shift. Both GR and PR were rather unstable in SMA-nanodiscs, but the highest thermal stability was realized by the MSP-nanodisc environment. The size of the MSP-nanodisc was too small to fit the PR hexamer, but large enough to contain the PR monomer and GR trimer. This permitted the comparison of the photocycle of trimeric GR in a membrane-mimicking (MSP-nanodisc) and a detergent (DDM) environment. The ultrarapid early phase of the photocycle (femto- to picosecond lifetimes) showed very similar kinetics in either environment, but the slower part, initiated with proton transfer and generation of the M intermediate, proceeded faster in the nanodisc environment. The implications of our results for the biophys. characterization of PR and GR are discussed.

Biochimica et Biophysica Acta, Biomembranes published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, HPLC of Formula: 85618-21-9.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Sansenya, Sompong’s team published research in Archives of Biochemistry and Biophysics in 510 | CAS: 85618-21-9

Archives of Biochemistry and Biophysics published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Computed Properties of 85618-21-9.

Sansenya, Sompong published the artcileThe crystal structure of rice (Oryza sativa L.) Os4BGlu12, an oligosaccharide and tuberonic acid glucoside-hydrolyzing β-glucosidase with significant thioglucohydrolase activity, Computed Properties of 85618-21-9, the publication is Archives of Biochemistry and Biophysics (2011), 510(1), 62-72, database is CAplus and MEDLINE.

Rice Os4BGlu12, a glycoside hydrolase family 1 (GH1) β-glucosidase, hydrolyzes β-(1,4)-linked oligosaccharides of 3-6 glucosyl residues and the β-(1,3)-linked disaccharide laminaribiose, as well as certain glycosides. The crystal structures of apo Os4BGlu12, and its complexes with 2,4-dinitrophenyl-2-deoxy-2-fluoroglucoside (DNP2FG) and 2-deoxy-2-fluoroglucose (G2F) were solved at 2.50, 2.45 and 2.40 Å resolution, resp. The overall structure of rice Os4BGlu12 is typical of GH1 enzymes, but it contains an extra disulfide bridge in the loop B region. The glucose ring of the G2F in the covalent intermediate was found in a 4C1 chair conformation, while that of the non-covalently bound DNP2FG had a 1S3 skew boat, consistent with hydrolysis via a 4H3 half-chair transition state. The position of the catalytic nucleophile (Glu393) in the G2F structure was more similar to that of the Sinapsis alba myrosinase G2F complex than to that in covalent intermediates of other O-glucosidases, such as rice Os3BGlu6 and Os3BGlu7 β-glucosidases. This correlated with a significant thioglucosidase activity for Os4BGlu12, although with 200- to 1200-fold lower kcat/Km values for S-glucosides than the comparable O-glucosides, while hydrolysis of S-glucosides was undetectable for Os3BGlu6 and Os3BGlu7.

Archives of Biochemistry and Biophysics published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Computed Properties of 85618-21-9.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Patchornik, Guy’s team published research in Soft Matter in 8 | CAS: 85618-21-9

Soft Matter published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Recommanded Product: (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol.

Patchornik, Guy published the artcileTethered non-ionic micelles: a matrix for enhanced solubilization of lipophilic compounds, Recommanded Product: (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, the publication is Soft Matter (2012), 8(32), 8456-8463, database is CAplus.

A specific mechanism for tethering micelles composed of non-ionic detergents is presented. The mechanism does not require any precipitant, high ionic strength or temperature alterations. Rather, it relies on complexes between hydrophobic chelators embedded within the micelle and appropriate metal cations in the aqueous phase, serving as mediators. The approach was applied to: (i) four non-ionic detergents (tetraethylene glycol monooctyl ether (C8E4), n-dodecyl-β-D-maltoside (DDM), octyl β-D-1-thioglucopyranoside (OTG), and n-octyl-β-D-glucopyranoside (OG)), (ii) two hydrophobic chelators (bathophenanthroline and N-(1,10-phenanthrolin-5-yl)decanamide, Phen-C10) and (iii) five transition metals (Fe2+, Ni2+, Zn2+, Cd2+, and Mn2+). The mandatory requirement for a hydrophobic chelator and transition metals, capable of binding two (or more) chelators simultaneously, was demonstrated. The potential generality of the mechanism presented derives from the observation that different combinations of [detergent : chelator : metal] are able to induce specific micellar clustering. The greater solubilization capacity of tethered-micelles in comparison with untethered micelles was demonstrated when the water insoluble aromatic mol. fluorenone (8 mM = 1.44 mg mL-1) and two highly lipophilic antibiotics: chloramphenicol (5 mM = 1.62 mg mL-1) and tetracycline (1.5 mM = 0.66 mg mL-1) were solubilized – only when the micelles were tethered.

Soft Matter published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Recommanded Product: (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Tanaka, Masamichi’s team published research in Journal of the American Chemical Society in 140 | CAS: 85618-21-9

Journal of the American Chemical Society published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C9H9NO6S, Name: (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol.

Tanaka, Masamichi published the artcileBoronic-Acid-Catalyzed Regioselective and 1,2-cis-Stereoselective Glycosylation of Unprotected Sugar Acceptors via SNi-Type Mechanism, Name: (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, the publication is Journal of the American Chemical Society (2018), 140(10), 3644-3651, database is CAplus and MEDLINE.

Regio- and 1,2-cis-stereoselective chem. glycosylation of unprotected glycosyl acceptors has been in great demand for the efficient synthesis of natural glycosides. However, simultaneously regulating these selectivities has been a longstanding problem in synthetic organic chem. In nature, glycosyl transferases catalyze regioselective 1,2-cis-glycosylations via the SNi mechanism, yet no useful chem. glycosylations based on this mechanism have been developed. In this paper, we report a highly regio- and 1,2-cis-stereoselective SNi-type glycosylation of 1,2-anhydro donors and unprotected sugar acceptors using p-nitrophenylboronic acid (10e) as a catalyst in the presence of water under mild conditions. Highly controlled regio- and 1,2-cis-stereoselectivities were achieved via the combination of boron-mediated carbohydrate recognition and the SNi-type mechanism. Mechanistic studies using the KIEs and DFT calculations were consistent with a highly dissociative concerted SNi mechanism. This glycosylation method was applied successfully to the direct glycosylation of unprotected natural glycosides and the efficient synthesis of a complex oligosaccharide with minimal protecting groups.

Journal of the American Chemical Society published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C9H9NO6S, Name: (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Dutta, Sansa’s team published research in Analyst (Cambridge, United Kingdom) in 140 | CAS: 85618-21-9

Analyst (Cambridge, United Kingdom) published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Quality Control of 85618-21-9.

Dutta, Sansa published the artcileEngineered-membranes and engineered-micelles as efficient tools for purification of halorhodopsin and bacteriorhodopsin, Quality Control of 85618-21-9, the publication is Analyst (Cambridge, United Kingdom) (2015), 140(1), 204-212, database is CAplus and MEDLINE.

We describe two alternative and complementary purification methods for halorhodopsin and bacteriorhodopsin. The first relies on a unique form of detergent micelles which we have called engineered-micelles. These are specifically conjugated in the presence of [hydrophobic chelator:Fe2+] complexes and form detergent aggregates into which membrane proteins partition, but hydrophilic water-soluble proteins do not. The approach was tested on the membrane protein, bacteriorhodopsin (bR), with five non-ionic detergents (OG, OTG, NG, DM, and DDM), commonly used in purification and crystallization of membrane proteins, in combination with the com. available bathophenanthroline or with one of the three synthesized phenanthroline derivatives (Phen-C10, Phen-C8 and Phen-C6). Our results show that bR is extracted efficiently (60-86%) and directly from its native membrane into diverse detergent aggregates with preservation of its native conformation, while 90-95% of an artificial contaminating background is excluded. For implementation of the second method, based on engineered-membranes, the use of detergents, which in some cases may produce protein denaturation, is not required at all. Protein-containing membranes are conjugated via the same hydrophobic [chelator:metal ion] complexes but maintain the membrane protein in its native bilayer environment throughout the process. This method is demonstrated on the membrane protein halorhodopsin from Natronomonas pharaonis (phR) and leads to good recovery yields (74-89%) and removal of >85% of artificial background impurities while preserving the native state of phR. The detailed structure of the hydrophobic chelator used has been found to have a marked effect on the purity and yield of both methods.

Analyst (Cambridge, United Kingdom) published new progress about 85618-21-9. 85618-21-9 belongs to alcohols-buliding-blocks, auxiliary class Tetrahydropyran,Chiral,sulfides,Alcohol, name is (2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(octylthio)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C14H28O5S, Quality Control of 85618-21-9.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts