The origin of a common compound about (3-Bromo-2-methylphenyl)methanol

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 83647-43-2, (3-Bromo-2-methylphenyl)methanol.

Reference of 83647-43-2, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 83647-43-2, name is (3-Bromo-2-methylphenyl)methanol. This compound has unique chemical properties. The synthetic route is as follows.

To a flask charged with (3-bromo-2- methylphenyl)methanol (6.0 g, 30 mmol) was added a 1M TFA solution of Thallium Trifluoroacetate (16.2 g, 29.8 mmol). The mixture was stirred at RT overnight. Analysis by TLC showed no starting material remaining. The solvent was removed under vacuum, and the residue was pumped under high vacuum for 30 min to ensure complete removal of TFA. To the residue was then added Palladium(II) Chloride (529 mg, 2.98 mmol), Lithium Chloride (2.53 g, 59.7 mmol), Magnesium Oxide (2.41 g, 59.7 mmol), and MeOH (150 mL). The reaction was flushed with CO twice, and kept under CO at room temperature. Analysis by LC showed a big product spot within 2 hours. To this solution was added ethyl acetate to precipitate the salts. The black solution was filtered through a celite pad, washed with EtOAc, adsorbed onto silica and purified by silica gel chromatography to afford title compound. 1H-NMR (500 MHz, CDC13) delta ppm 7.71 (d, J= 8.0 Hz, 1H), 7.58 (d, J= 8.0 Hz, 1H), 5.25 (s, 2H), 2.37 (s, 3H).

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 83647-43-2, (3-Bromo-2-methylphenyl)methanol.

Reference:
Patent; MERCK SHARP & DOHME CORP.; DING, Fa-Xiang; DONG, Shuzhi; FRIE, Jessica; GU, Xin; JIANG, Jinlong; PASTERNAK, Alexander; TANG, Haifeng; WU, Zhicai; YU, Yang; SUZUKI, Takao; WO2014/15495; (2014); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Some scientific research about (3-Bromo-2-methylphenyl)methanol

At the same time, in my other blogs, there are other synthetic methods of this type of compound,83647-43-2, (3-Bromo-2-methylphenyl)methanol, and friends who are interested can also refer to it.

Adding a certain compound to certain chemical reactions, such as: 83647-43-2, (3-Bromo-2-methylphenyl)methanol, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Computed Properties of C8H9BrO, blongs to alcohols-buliding-blocks compound. Computed Properties of C8H9BrO

To a flask charged with (3-bromo-2- methylphenyl)methanol (6.0 g, 30 mmol) was added a 1M TFA solution of Thallium Trifluoroacetate (16.2 g, 29.8 mmol). The mixture was stirred at rt overnight. Analysis by TLC showed no starting material remaining. The solvent was removed under vacuum, and the residue was pumped under high vacuum for 30 min to ensure complete removal of TFA. To the residue was then added Palladium(II) Chloride (529 mg, 2.98 mmol), Lithium Chloride (2.53 g, 59.7 mmol), Magnesium Oxide (2.41 g, 59.7 mmol), and MeOH (150 mL). The reaction was flushed with CO twice, and kept under CO at room temperature. Analysis by LC showed a big product spot within 2 hours. To this solution was added ethyl acetate to precipitate the salts. The black solution was filtered through a CELITE pad, washed with EtOAc, adsorbed onto silica and purified by silica gel chromatography to afford title compound. 1H-NMR (500 MHz, CDCI3) delta ppm 7.71 (d, J= 8.0 Hz, 1H), 7.58 (d, J= 8.0 Hz, 1H), 5.25 (s, 2H), 2.37 (s, 3H).

At the same time, in my other blogs, there are other synthetic methods of this type of compound,83647-43-2, (3-Bromo-2-methylphenyl)methanol, and friends who are interested can also refer to it.

Reference:
Patent; MERCK SHARP & DOHME CORP.; DEJESUS, Reynalda, K.; FU, Qinghong; JIANG, Jinlong; TANG, Haifeng; (84 pag.)WO2016/122994; (2016); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

A new synthetic route of (3-Bromo-2-methylphenyl)methanol

The synthetic route of 83647-43-2 has been constantly updated, and we look forward to future research findings.

Reference of 83647-43-2 , The common heterocyclic compound, 83647-43-2, name is (3-Bromo-2-methylphenyl)methanol, molecular formula is C8H9BrO, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

To a fiask charged with (3-bromo-2- methylphenyl)methanol (6.0 g, 30 mmol) was added a lM TFA solution of thallium trifluoroacetate (16.2 g, 29.8 mmol). The mixture was stirred at RT oyernight. Analysis by TLC showed no starting material remaining. The solyent was remoyed under yacuum, and the residuewas pumped under high yacuum for 30 min to ensure complete remoyal of TFA. To the residue was then added palladium(II) chloride (529 mg, 2.98 mmol), lithium chloride (2.53 g, 59.7 mmol), magnesium oxide (2.41 g, 59.7 mmol), and MeOH (150 mL). The reaction was flushed with CO twice, and kept under CO at room temperature. Analysis by LC showed a big product spot within 2 hours. To this solution was added ethyl acetate to precipitate the salts. The blaeksolution was filtered through a CELITE pad, washed with EtOAc, adsorbed onto silica and purified by silica gel chromatography to afford title compound. 1H-NMR (500 MHz, CDC13)ppm 7.71 (d, J= 8.0 Hz, 1H), 7.58 (d, J= 8.0 Hz, 1H), 5.25 (s, 2H), 2.37 (s, 3H).

The synthetic route of 83647-43-2 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; MERCK SHARP & DOHME CORP.; PASTERNAK, Alexander; DE JESUS, Reynalda, Keh; DING, Fa-xiang; DONG, Shuzhi; FRIE, Jessica; GU, Xin; JIANG, Jinlong; SHAHRIPOUR, Aurash; PIO, Barbara; TANG, Haifeng; WALSH, Shawn; WO2014/126944; (2014); A2;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Introduction of a new synthetic route about (3-Bromo-2-methylphenyl)methanol

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 83647-43-2, (3-Bromo-2-methylphenyl)methanol.

Related Products of 83647-43-2, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 83647-43-2, name is (3-Bromo-2-methylphenyl)methanol, molecular formula is C8H9BrO, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

To a flask charged with (3-bromo-2- methylphenyl)methanol (6.0 g, 30 mmol) was added a 1M TFA solution of thallium trifluoroacetate (16.2 g, 29.8 mmol). The mixture was stirred at RT overnight. Analysis by TLC showed no starting material remaining. The solvent was removed under vacuum, and the residue was pumped under high vacuum for 30 min to ensure complete removal of TFA. To the residue was then added palladium(II) chloride (529 mg, 2.98 mmol), lithium chloride (2.53 g, 59.7 mmol), magnesium oxide (2.41 g, 59.7 mmol), and MeOH (150 mL). The reaction was flushed with CO twice, and kept under CO at room temperature. Analysis by LC showed a big product spot within 2 hours. To this solution was added ethyl acetate to precipitate the salts. The black solution was filtered through a CELITE pad, washed with EtOAc, adsorbed onto silica and purified by silica gel chromatography to afford title compound. 1H-NMR (500 MHz, CDCI3) delta ppm 7.71 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 5.25 (s, 2H), 2.37 (s, 3H).

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 83647-43-2, (3-Bromo-2-methylphenyl)methanol.

Reference:
Patent; MERCK SHARP & DOHME CORP.; DING, Fa-Xiang; DONG, Shuzhi; FRIE, Jessica; GU, Xin; JIANG, Jinlong; PASTERNAK, Alexander; TANG, Haifeng; WU, Zhicai; YU, Yang; SUZUKI, Takao; WO2014/18764; (2014); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The origin of a common compound about (3-Bromo-2-methylphenyl)methanol

The chemical industry reduces the impact on the environment during synthesis 83647-43-2, I believe this compound will play a more active role in future production and life.

Synthetic Route of 83647-43-2, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.83647-43-2, name is (3-Bromo-2-methylphenyl)methanol, molecular formula is C8H9BrO, molecular weight is 201.0605, as common compound, the synthetic route is as follows.

To a flask charged with (3-bromo-2-methylphenyl)methanol (6.0 g, 30 mmol) was added a IM TFA solution of Thallium Trifiuoroacetate (16.2 g, 29.8 mmol). The mixture was stirred at RT overnight. Analysis by TLC showed no starting material remaining. The solvent was removed under vacuum, and the residue was pumped under high vacuum for 30 min to ensure complete removal of TFA. To the residue was then added Palladium(II) Chloride (529 mg, 2.98 mmol), Lithium Chloride (2.53 g, 59.7 mmol), Magnesium Oxide (2.41 g, 59.7 mmol), and MeOH (150 mL). The reaction was flushed with CO twice, and kept under CO at room temperature. Analysis by LC showed a big product spot within 2 hours. To this solution was added ethyl acetate to precipitate the salts. The black solution was filtered through a celite pad, washed with EtOAc, adsorbed onto silica and purified by silica gel chromatography to afford 5-bromo-4- methyl-2-benzofuran-l (3H)-one. 1H-NMR (500 MHz, CDCl3) delta ppm 7.71 (d, J= 8.0 Hz, IH), 7.58 (d, J= 8.0 Hz, IH), 5.25 (s, 2H), 2.37 (s, 3H).

The chemical industry reduces the impact on the environment during synthesis 83647-43-2, I believe this compound will play a more active role in future production and life.

Reference:
Patent; MERCK SHARP &; DOHME CORP.; PASTERNAK, Alexander; SHAHRIPOUR, Aurash; TANG, Haifeng; TEUMELSAN, Nardos, H.; YANG, Lihu; ZHU, Yuping; WALSH, Shawn, P.; WO2010/129379; (2010); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Some scientific research about (3-Bromo-2-methylphenyl)methanol

Statistics shows that 83647-43-2 is playing an increasingly important role. we look forward to future research findings about (3-Bromo-2-methylphenyl)methanol.

Application of 83647-43-2, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.83647-43-2, name is (3-Bromo-2-methylphenyl)methanol, molecular formula is C8H9BrO, molecular weight is 201.0605, as common compound, the synthetic route is as follows.

Tetrahydrofuran solvent and aqueous 0.5M potassium tribasic phosphate solutions were sparged with nitrogen for 15 minutes prior to dispensing for use. In a 1 L rb flask charge (2,3-dihydrobenzo[b][1,4]dioxin-6-yl)boronic acid (5.201 g, 28.9 mmol), (3-bromo-2-methylphenyl)methanol (5.00 g, 24.87 mmol) and chloro(2-dicyclohexylphosphino-2?,4?,6?-tri-i-propyl-1,1?-biphenyl)(2?-amino-1,1?-biphenyl-2-yl) palladium(II) (also known as second generation XPhos precatalyst, CAS number 1310584-14-5, See Kinzel, Tom; Zhang, Yong; Buchwald, Stephen L. J. Am. Chem. Soc. 2010, 132(40), 14073-14075.) (0.588 g, 0.747 mmol), add previously deoxygenated tetrahydrofuran (124 mL) and 0.5 M aq Pottasium phosphate, tribasic solution (124 mL, 62.2 mmol), place under nitrogen and sparge with additional nitrogen for 10 minutes. The reaction was stirred under nitrogen at room temperature for 2 days. Ethyl acetate (300 mL) was added to the reaction followed by 200 mL of brine then the reaction was partitioned in a sepratory funnel. The organic extract was washed again (1×) with brine and dried over magnesium sulfate, filtered and solvent removed in vacuo using a rotary evaporator. The crude reaction product (7.84 g dark oil) was purified by silica gel chromatography eluting with a step gradient of 25% ethyl acetate in hexanes and 30% ethyl acetate in hexanes. The purified product (6.19 g, 95% yield) was obtained as a brown oil. 1H NMR (CHLOROFORM-d) delta: 7.37 (dd, J=7.4, 1.1 Hz, 1H), 7.21-7.26 (m, 1H), 7.17-7.21 (m, 1H), 6.91 (d, J=8.2 Hz, 1H), 6.82 (d, J=2.0 Hz, 1H), 6.77 (dd, J=8.3, 2.1 Hz, 1H), 4.77 (s, 2H), 4.31 (s, 4H), 2.27 (s, 3H).

Statistics shows that 83647-43-2 is playing an increasingly important role. we look forward to future research findings about (3-Bromo-2-methylphenyl)methanol.

Reference:
Patent; Bristol-Myers Squibb Company; Chupak, Louis S.; Ding, Min; Martin, Scott W.; Zheng, Xiaofan; Hewawasam, Piyasena; Connolly, Timothy P.; Xu, Ningning; Yeung, Kap-Sun; Zhu, Juliang; Langley, David R.; Tenney, Daniel J.; Scola, Paul Michael; US2015/291549; (2015); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Analyzing the synthesis route of (3-Bromo-2-methylphenyl)methanol

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 83647-43-2, (3-Bromo-2-methylphenyl)methanol, other downstream synthetic routes, hurry up and to see.

Application of 83647-43-2 ,Some common heterocyclic compound, 83647-43-2, molecular formula is C8H9BrO, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

INTERMEDIATE 2 5-bromo-4-methyl-2-benzofuran-1 (3H)-one; Step B; To a flask charged with (3-bromo-2-methylphenyl)methanol (6.0 g, 30 mmol) was added a 1M TFA solution ofthalliumtrifluoroacetate (16.2 g, 29.8 mmol). The mixture was stirred at RT overnight. Analysis by TLC showed no starting material remaining. The solvent was removed under vacuum, and the residuewas pumped under high vacuum for 30 min to ensure complete removal of TF A. To the residuewas then added Palladium(II) Chloride (529 mg, 2.98 mmol), Lithium Chloride (2.53 g, 59.7mmol), Magnesium Oxide (2.41 g, 59.7 mmol), and MeOH (150 mL). The reaction was flushedwith CO twice, and kept under CO at room temperature. Analysis by LC showed a big product spot within 2 hours. To this solution was added ethyl acetate to precipitate the salts. Thesolution was filtered through a Celite pad, washed with EtOAc, adsorbed onto silica and purifiedby silica gel chromatography to afford the title compound: 1H-NMR (500 MHz, CDCh) 8 ppm7.71 (d, J= 8.0 Hz, 1H), 7.58 (d, J= 8.0 Hz, 1H), 5.25 (s, 2H), 2.37 (s, 3H).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 83647-43-2, (3-Bromo-2-methylphenyl)methanol, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; MERCK SHARP & DOHME CORP.; PASTERNAK, Alexander; BLIZZARD, Timothy; CHOBANIAN, Harry; DE JESUS, Reynalda; DING, Fa-Xiang; DONG, Shuzhi; GUDE, Candido; KIM, Dooseop; TANG, Haifeng; WALSH, Shawn; PIO, Barbara; JIANG, Jinlong; WO2013/28474; (2013); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The important role of 83647-43-2

The synthetic route of 83647-43-2 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 83647-43-2, name is (3-Bromo-2-methylphenyl)methanol, the common compound, a new synthetic route is introduced below. Product Details of 83647-43-2

Step B: 5-bromo-4-methyl-2-benzofuran-l(3H)-one: To a flask charged with (3-bromo-2- methylphenyl)methanol (6.0 g, 30 mmol) was added a 1M TFA solution of Thallium Trifluoroacetate (16.2 g, 29.8 mmol). The mixture was stirred at RT overnight. The solvent was removed under vacuum, and the residue was pumped under high vacuum for 30 min to ensure complete removal of TFA. To the residue was then added Palladium(II) Chloride (529 mg, 2.98 mmol), Lithium Chloride (2.53 g, 59.7 mmol), Magnesium Oxide (2.41 g, 59.7 mmol), and MeOH (150 mL). The reaction was flushed with CO twice, and kept under CO at room temperature. After two hours, to this solution was added ethyl acetate to precipitate the salts. The black solution was filtered through a CELITE pad, washed with EtOAc, adsorbed onto silica and purified by silica gel chromatography to afford title compound.

The synthetic route of 83647-43-2 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; MERCK SHARP & DOHME CORP.; DONG, Shuzhi; PASTERNAK, Alexander; GU, Xin; FU, Qinghong; JIANG, Jinlong; DING, Fa-Xiang; TANG, Haifeng; DEJESUS, Reynalda, K.; SUZUKI, Takao; WO2015/100147; (2015); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

New learning discoveries about 83647-43-2

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,83647-43-2, its application will become more common.

Adding a certain compound to certain chemical reactions, such as: 83647-43-2, (3-Bromo-2-methylphenyl)methanol, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 83647-43-2, blongs to alcohols-buliding-blocks compound. Computed Properties of C8H9BrO

: To a flask charged with (3-bromo-2-methylphenyl)methanol (6.0 g, 30 mmol) was added a 1M TFA solution of ThalliumTrifluoroacetate (16.2 g, 29.8 mmol). The mixture was stirred at RT overnight. Analysis by TLC showed no starting material remaining. The solvent was removed under vacuum, and the residue was pumped under high vacuum for 30 mm to ensure complete removal of TFA. To the residue was then added Palladium(II) Chloride (529 mg, 2.98 mmol), Lithium Chloride (2.53 g,59.7 mmol), Magnesium Oxide (2.41 g, 59.7 mmol), and MeOH (150 mL). The reaction was flushed with CO twice, and kept under CO at room temperature. Analysis by LC showed a big product spot within 2 hours. To this solution was added ethyl acetate to precipitate the salts. The solution was filtered through a CELITE pad, washed with EtOAc, adsorbed onto silica and purified by silica gel chromatography to afford 5 -bromo-4-methyl-2-benzofuran- 1 (311)-one.1H-NMR (500 MHz, CDC13) oe ppm 7.71 (d, J= 8.0 Hz, 1H), 7.58 (d, J 8.0 Hz, 1H), 5.25 (s,2H), 2.37 (s, 3H).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,83647-43-2, its application will become more common.

Reference:
Patent; MERCK SHARP & DOHME CORP.; PASTERNAK, Alexander; TANG, Haifeng; FRIE, Jessica; FERGUSON, Ronald Dale; GUO, Zhiqiang; SHI, Zhi-Cai; CATO, Brian; FU, Qinghong; WO2015/65866; (2015); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The important role of 83647-43-2

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,83647-43-2, its application will become more common.

Electric Literature of 83647-43-2, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 83647-43-2, name is (3-Bromo-2-methylphenyl)methanol. A new synthetic method of this compound is introduced below.

(2,3-dihydrobenzo[b][l,4]dioxin-6-yl)boronic acid (0.537 g, 2.98 mmol),(3- bromo-2-methylphenyl)methanol (0.5 g, 2.487 mmol) and 2nd Generation XPhos precatalyst (0.059 g, 0.075 mmol) was covered with THF (24 ml) and degassed. Potassium phosphate, tribasic (12.43 ml, 6.22 mmol) added as an 0.5 M aqueous solution. The reaction was stirred at room temperature sealed under argon overnight. The solvent was removed by rotary evaporation. The residue was purified using 3: 1 hexanes: ethyl acetate on a 24 g silica gel column. The fractions containing the desired product provided 0.59g of the title compound as a colorless oil. 1H NMR (400MHz, CHLOROFORM-d) delta 7.39 (d, J=7.3 Hz, 1H), 7.25 (t, J=7.6 Hz, 1H), 7.22 – 7.18 (m, 1H), 6.92 (d, J=8.1 Hz, 1H), 6.83 (d, J=1.7 Hz, 1H), 6.78 (dd, J=8.2, 1.8 Hz, 1H), 4.79 (d, J=5.9 Hz, 2H), 4.33 (s, 4H), 2.28 (s, 3H).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,83647-43-2, its application will become more common.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; CHUPAK, Louis S.; ZHENG, Xiaofan; WO2015/34820; (2015); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts