Klug, Dana M. team published research in Journal of Medicinal Chemistry in 2020 | 7748-36-9

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Computed Properties of 7748-36-9

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 7748-36-9, formula is C3H6O2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Computed Properties of 7748-36-9

Klug, Dana M.;Tschiegg, Laura;Diaz, Rosario;Rojas-Barros, Domingo;Perez-Moreno, Guiomar;Ceballos, Gloria;Garcia-Hernandez, Raquel;Martinez-Martinez, Maria Santos;Manzano, Pilar;Ruiz, Luis Miguel;Caffrey, Conor R.;Gamarro, Francisco;Pacanowska, Dolores Gonzalez;Ferrins, Lori;Navarro, Miguel;Pollastri, Michael P. research published 《 Hit-to-Lead Optimization of Benzoxazepinoindazoles As Human African Trypanosomiasis Therapeutics》, the research content is summarized as follows. Human African trypanosomiasis (HAT) is a neglected tropical disease caused by infection with either of two subspecies of the parasite Trypanosoma brucei. Due to a lack of economic incentive to develop new drugs, current treatments have severe limitations in terms of safety, efficacy, and ease of administration.In an effort to develop new HAT therapeutics, author report the structure-activity relationships around T. brucei for a series of benzoxazepinoindazoles previously identified through a high-throughput screen of human kinase inhibitors, and the subsequent in vivo experiments for HAT. Author identified compound I (R1 = H; R2 = Me; R3 = NH2) , which showed an improved kinase selectivity profile and acceptable pharmacokinetic parameters, as a promising lead. Although treatment with I (R1 = H; R2 = Me; R3 = NH2) cured 60% of mice in a systemic model of HAT, the compound was unable to clear parasitemia in a CNS model of the disease. Author also report the results of cross-screening these compounds against T. cruzi, L. donovani, and S. mansoni.

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Computed Properties of 7748-36-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kozikowski, Alan P. team published research in Synlett in 1991 | 7748-36-9

Application of C3H6O2, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 7748-36-9, formula is C3H6O2, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Application of C3H6O2

Kozikowski, Alan P.;Fauq, Abdul H. research published 《 Synthesis of novel four-membered ring amino acids as modulators of the N-methyl-D-aspartate (NMDA) receptor complex》, the research content is summarized as follows. The first syntheses of three novel four-membered ring amino acids (3-aminooxetane-3-carboxylic acid, 3-aminoazetidine-3-carboxylic acid and 3-aminotheitane-3-carboxylic acid) (I; X = O, NH, S), starting from 1-chloro-2,3-epoxypropane, are reported together with a summary of their biol. actions at the NMDA receptor-ion channel complex.

Application of C3H6O2, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lai, Junshan team published research in ACS Catalysis in 2020 | 7748-36-9

Synthetic Route of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 7748-36-9, formula is C3H6O2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Synthetic Route of 7748-36-9

Lai, Junshan;Fianchini, Mauro;Pericas, Miquel A. research published 《 Development of Immobilized SPINOL-Derived Chiral Phosphoric Acids for Catalytic Continuous Flow Processes. Use in the Catalytic Desymmetrization of 3,3-Disubstituted Oxetanes》, the research content is summarized as follows. A family of C2-sym. 1,1′-spirobiindane-7,7′-diol (SPINOL) derivatives containing polymerizable styryl units has been prepared through a highly convergent approach. Radical copolymerization of these monomers with styrene has allowed the synthesis of a family of immobilized SPINOL-derived chiral phosphoric acids (SPAs) where the combination of the restricted axial flexibility of the SPINOL units and the existence of extended and adaptable chiral walls adjacent to them leads to enhanced stereocontrol in catalytic processes. The optimal immobilized species (Cat f) brings about the catalytic desymmetrization of 3,3-disubstituted oxetanes in up to 90% yield with up to >99% enantioselectivity, exhibiting a very high recyclability (no decrease in conversion or enantioselectivity after 16, 16-h runs). To exploit these characteristics, a continuous flow process has been implemented and operated for the sequential preparation of 17 diverse enantioenriched products. The suitability of the flow setup for gram scale preparations (20 mmol scale), the stability of Cat f for long periods of time with intermittent use in flow, and its deactivation/reactivation by treatment with pyridine/hydrochloric acid in dioxane have been demonstrated. D. functional theory has been employed to provide a rational justification of the deep effect on enantioselectivity arising from the presence of sterically bulky substituents at the 6,6′-positions of the SPINOL unit. The main structural features of Cat f have subsequently been incorporated to the design of a simplified homogeneous analog available in a straightforward manner (Cat g) that performs the benchmark desymmetrization reaction with similar yields and enantioselectivities as Cat f, providing a convenient alternative for cases when single use in solution is sought.

Synthetic Route of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kanoh, Shigeyoshi team published research in Tetrahedron in 2002 | 7748-36-9

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Synthetic Route of 7748-36-9

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 7748-36-9, formula is C3H6O2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Synthetic Route of 7748-36-9

Kanoh, Shigeyoshi;Naka, Masashi;Nishimura, Tomonari;Motoi, Masatoshi research published 《 Isomerization of cyclic ethers having a carbonyl functional group: new entries into different heterocyclic compounds》, the research content is summarized as follows. Oxiranes (epoxides) and oxetanes having a carbonyl functional group are chemoselectively isomerized to different heterocyclic compounds via Lewis acid-promoted 1,6- and 1,7-intramol. nucleophilic attacks of the carbonyl oxygen on the electron-deficient carbon neighboring the oxonium oxygen: for example, cyclic imides to bicyclic acetals, esters to bicyclic ortho esters, sec-amides to 4,5-dihydrooxazole or 5,6-dihydro-4H-1,3-oxazines, and tert-amides to bicyclic acetals or azetidines. The intramol. attack of a 1,5-positioned carbonyl oxygen predominantly results in a propagating-end isomerization polymerization On the other hand, cyclic ethers having a 1,8- or farther positioned carbonyl group undergo conventional ring-opening polymerization A THF (oxolane) ring does not open, even with a 1,6-positioned carbonyl group.

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Synthetic Route of 7748-36-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hu, Anhua team published research in Journal of the American Chemical Society in 2018 | 7748-36-9

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Related Products of 7748-36-9

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 7748-36-9, formula is C3H6O2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Related Products of 7748-36-9

Hu, Anhua;Chen, Yilin;Guo, Jing-Jing;Yu, Na;An, Qing;Zuo, Zhiwei research published 《 Cerium-Catalyzed Formal Cycloaddition of Cycloalkanols with Alkenes through Dual Photoexcitation》, the research content is summarized as follows. We describe a synergistic utilization of cerium photocatalysis and photoinduced electron transfer catalysis that enables an atom- and step-economical ring expansion of readily available cycloalkanols. This operationally simple protocol provides rapid access to privileged and synthetically challenging bridged lactones. The mild catalytic manifold has been adapted to continuous flow for scale-up applications and employed for the concise synthesis of polycyclic core of nepalactones.

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Related Products of 7748-36-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hu, Huayou team published research in Nature Catalysis in 2020 | 7748-36-9

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Category: alcohols-buliding-blocks

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 7748-36-9, formula is C3H6O2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Category: alcohols-buliding-blocks

Hu, Huayou;Chen, Si-Jie;Mandal, Mukunda;Pratik, Saied Md;Buss, Joshua A.;Krska, Shane W.;Cramer, Christopher J.;Stahl, Shannon S. research published 《 Copper-catalyzed benzylic C-H coupling with alcohols via radical relay enabled by redox buffering》, the research content is summarized as follows. Copper-catalyzed oxidative cross-coupling of benzylic C-H bonds with alcs. to afford benzyl ethers, enabled by a redox buffering strategy that maintains the activity of the copper catalyst throughout the reaction was reported. The reactions employ the C-H substrate as the limiting reagent and exhibit broad scope with respect to both coupling partners. This approach to direct site-selective functionalization of C(sp3)-H bonds provides the basis for efficient three-dimensional diversification of organic mols. and should find widespread utility in organic synthesis, particularly for medicinal chem. applications.

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Huang, Hai team published research in Angewandte Chemie, International Edition in 2021 | 7748-36-9

Recommanded Product: Oxetan-3-ol, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 7748-36-9, formula is C3H6O2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Recommanded Product: Oxetan-3-ol

Huang, Hai;Zhang, Tianyu;Sun, Jianwei research published 《 Mild C-C Bond Formation via Lewis Acid Catalyzed Oxetane Ring Opening with Soft Carbon Nucleophiles》, the research content is summarized as follows. Mild oxetane opening by soft carbon nucleophiles has been developed for efficient C-C bond formation. In the presence of LiNTf2 or TBSNTf2 as catalyst, silyl ketene acetals were found to be effective nucleophiles to generate a wide range of highly oxygenated mols., which are key substructure in natural products like polyketides. Furthermore, intramol. oxetane opening by a styrene-based carbon nucleophile via a Prins-type process was also achieved with Sc(OTf)3 as catalyst, leading to efficient formation of the useful 2,3-dihydrobenzo[b]oxepine skeleton.

Recommanded Product: Oxetan-3-ol, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Harter, Alexander G. team published research in ChemPlusChem in 2021 | 7748-36-9

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Application of C3H6O2

In general, the hydroxyl group makes alcohols polar. 7748-36-9, formula is C3H6O2, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Application of C3H6O2

Harter, Alexander G.;Klapotke, Thomas M.;Stierstorfer, Jorg;Voggenreiter, Michael;Zeng, Xiaoqing research published 《 Synthesis, Characterization and Energetic Performance of Oxalyl Diazide, Carbamoyl Azide, and N,N′-Bis(azidocarbonyl)hydrazine》, the research content is summarized as follows. As pure compounds, small carbonyl azides enjoy a bad reputation, due to the high explosive sensitivity and instability they demonstrate. Consequently, most reported examples have only been poorly characterized. The compounds oxalyl diazide (1), carbamoyl azide (2), as well as N,N′-bis(azidocarbonyl)hydrazine (3) were obtained by performing a diazotation reaction on the corresponding hydrazo precursor. Carbamoyl azide (2) could also be obtained from oxalyl diazide via Curtius rearrangement to the reactive isocyanate, followed by reaction with water. Further, different trapping reactions of the isocyanate with hydroxyl (methanol, oxetan-3-ol) and amino (2-amino-5H-tetrazole) functions are described. All products were extensively analyzed using IR, EA, DTA and multinuclear NMR spectroscopy, and the crystal structures elucidated using single crystal X-ray diffraction. In addition, the sensitivities toward friction and impact were determined and the energetic performances of the carbonyl azides were calculated using the EXPLO5 code.

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Application of C3H6O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Helmkamp, George K. team published research in Journal of Organic Chemistry in 1965 | 7748-36-9

Computed Properties of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 7748-36-9, formula is C3H6O2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Computed Properties of 7748-36-9

Helmkamp, George K.;Clark, Ronald D.;Koskinen, James R. research published 《 Quaternization of aziridines. Evidence for the monomeric state of products》, the research content is summarized as follows. cis-(I) or trans-1,2,3-Trimethylaziridine (II), cis- (III) or trans-ethyl-2,3-dimethylaziridine (IV) when treated with MeI afforded a solid which was found to decompose readily. It could not be assumed that the materials from I-IV were monomeric species. When the MeI salts of I-IV were treated with Ag 2,4,6-trinitrobenzenesulfonate, stable salts were obtained. Attempts to obtain mol. weights indicated the compounds appeared to be dimeric when MeCN and Ph2 was used but in alc. the results were equivocal. Optically active 1,2,3-trimethylaziridine (V) formed a MeI salt (VI) which was optically active, and its structure was considered to be monomeric. Further confirmation was obtained by treatment of VI with excess NH3 to give an optically active compound, whereas with NHMe2, meso-2,3-bis(dimethylamino)butane was obtained. The reactions with NH3 and NHMe2 were followed polarimetrically. The fact that the alkylation product of an aziridine reacted readily with a nucleophile verified the conclusion that the three-membered ring remained intact and retention of optical activity excluded racemization as a principal feature of the process.

Computed Properties of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hie, Liana team published research in Angewandte Chemie, International Edition in 2016 | 7748-36-9

Recommanded Product: Oxetan-3-ol, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 7748-36-9, formula is C3H6O2, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Recommanded Product: Oxetan-3-ol

Hie, Liana;Baker, Emma L.;Anthony, Sarah M.;Desrosiers, Jean-Nicolas;Senanayake, Chris;Garg, Neil K. research published 《 Nickel-Catalyzed Esterification of Aliphatic Amides》, the research content is summarized as follows. Recent studies have demonstrated that amides can be used in nickel-catalyzed reactions that lead to cleavage of the amide C-N bond, with formation of a C-C or C-heteroatom bond. However, the general scope of these methodologies has been restricted to amides where the carbonyl is directly attached to an arene or heteroarene. We now report the nickel-catalyzed esterification of amides derived from aliphatic carboxylic acids. The transformation requires only a slight excess of the alc. nucleophile and is tolerant of heterocycles, substrates with epimerizable stereocenters, and sterically congested coupling partners. Moreover, a series of amide competition experiments establish selectivity principles that will aid future synthetic design. These studies overcome a critical limitation of current Ni-catalyzed amide couplings and are expected to further stimulate the use of amides as synthetic building blocks in C-N bond cleavage processes.

Recommanded Product: Oxetan-3-ol, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts