O’Brien, Luke team published research in Angewandte Chemie, International Edition in 2022 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Application In Synthesis of 72824-04-5

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 72824-04-5, formula is C9H17BO2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Application In Synthesis of 72824-04-5

O’Brien, Luke;Argent, Stephen P.;Ermanis, Kristaps;Lam, Hon Wai research published 《 Gold(I)-Catalyzed Nucleophilic Allylation of Azinium Ions with Allylboronates》, the research content is summarized as follows. Gold(I)-catalyzed nucleophilic allylations of pyridinium and quinolinium ions with various allyl pinacolboronates was reported. The reactions was completely selective with respect to the site of the azinium ion that was attacked, to give various functionalized 1,4-dihydropyridines and 1,4-dihydroquinolines. Evidence suggested that the reactions proceed through nucleophilic allylgold(I) intermediates formed by transmetalation from allylboronates. D. functional theory (DFT) calculations provided mechanistic insight.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Application In Synthesis of 72824-04-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Oderinde, Martins S. team published research in Journal of Organic Chemistry in 2021 | 72824-04-5

Safety of 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Safety of 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Oderinde, Martins S.;Ramirez, Antonio;Dhar, T. G. Murali;Cornelius, Lyndon A. M.;Jorge, Christine;Aulakh, Darpandeep;Sandhu, Bhupinder;Pawluczyk, Joseph;Sarjeant, Amy A.;Meanwell, Nicholas A.;Mathur, Arvind;Kempson, James research published 《 Photocatalytic Dearomative Intermolecular [2 + 2] Cycloaddition of Heterocycles for Building Molecular Complexity》, the research content is summarized as follows. Indole and indoline rings are important pharmacophoric scaffolds found in marketed drugs, agrochems., and biol. active mols. The [2 + 2] cycloaddition reaction is a versatile strategy for constructing architecturally interesting, sp3-rich cyclobutane-fused scaffolds with potential applications in drug discovery programs. A general platform for visible-light mediated intermol. [2 + 2] cycloaddition of indoles with alkenes has been realized. A substrate-based screening approach led to the discovery of tert-butyloxycarbonyl (Boc)-protected indole-2-carboxyesters as suitable motifs for the intermol. [2 + 2] cycloaddition reaction. Significantly, the reaction proceeds in good yield with a wide variety of both activated and unactivated alkenes, including those containing free amines and alcs., and the transformation exhibits excellent regio- and diastereoselectivity. Moreover, the scope of the indole substrate is very broad, extending to previously unexplored azaindole heterocycles that collectively afford fused cyclobutane containing scaffolds that offer unique properties with functional handles and vectors suitable for further derivatization. DFT computational studies provide insights into the mechanism of this [2 + 2] cycloaddition, which is initiated by a triplet-triplet energy transfer process. The photocatalytic reaction was successfully performed on a 100 g scale to provide the dihydroindole analog.

Safety of 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Michalland, Jean team published research in Angewandte Chemie, International Edition in 2022 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Electric Literature of 72824-04-5

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 72824-04-5, formula is C9H17BO2, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Electric Literature of 72824-04-5

Michalland, Jean;Casaretto, Nicolas;Zard, Samir Z. research published 《 A Modular Access to 1,2- and 1,3-Disubstituted Cyclobutylboronic Esters by Consecutive Radical Additions》, the research content is summarized as follows. A modular approach to substituted cyclobutylboronic esters is described. It proceeds by successive intermol. radical additions of xanthates to pinacolato 1-cyclobutenylboronate and to pinacolato bicyclo[1.1.0]but-1-ylboronate. Success hinges on tuning the stability of the α-boryl radical by exploiting the stabilizing influence of the trivalent boronic ester and the slightly destabilizing cyclobutane, which increases the σ-character of the radical. Reductive removal of the xanthate group finally provides a range of 1,2- and 1,3-disubstituted cyclobutylboronic esters. The contrast with cyclopropylboronic esters is striking, since the strong destabilization by the highly strained cyclopropane ring allows the first radical addition to take place but not the second. Furthermore, the first adducts are geminal xanthyl boronic esters that can be converted into cyclobutanones. This chem. furnishes cyclobutylboronic esters that would be quite difficult to obtain otherwise and thus complements existing methods.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Electric Literature of 72824-04-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Miura, Hiroki team published research in ACS Catalysis in 2021 | 72824-04-5

Electric Literature of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Electric Literature of 72824-04-5

Miura, Hiroki;Hachiya, Yuka;Nishio, Hidenori;Fukuta, Yohei;Toyomasu, Tomoya;Kobayashi, Kosa;Masaki, Yosuke;Shishido, Tetsuya research published 《 Practical Synthesis of Allyl, Allenyl, and Benzyl Boronates through SN1′-Type Borylation under Heterogeneous Gold Catalysis》, the research content is summarized as follows. Efficient borylation of sp3 C-O bonds by supported Au catalysts is described. Au nanoparticles supported on TiO2 showed high activity under mild conditions employing low catalyst loading conditions without the aid of any additives, such as phosphine and bases. A variety of allyl, propargyl, and benzyl substrates participated in the heterogeneously catalyzed reactions to furnish the corresponding allyl, allenyl, and benzyl boronates in high yields. Besides, Au/TiO2 was also effective for the direct borylation of allylic and benzylic alcs. A mechanistic investigation based on a Hammett study and control experiments revealed that sp3 C-O bond borylation over supported Au catalysts proceeded through SN1′-type mechanism involving the formation of a carbocationic intermediate. The high activity, reusability, and environmental compatibility of the supported Au catalysts as well as the scalability of the reaction system enable the practical synthesis of valuable organoboron compounds

Electric Literature of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Morrison, Ryan J. team published research in Journal of the American Chemical Society in 2020 | 72824-04-5

Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 72824-04-5, formula is C9H17BO2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Morrison, Ryan J.;van der Mei, Farid W.;Romiti, Filippo;Hoveyda, Amir H. research published 《 A Catalytic Approach for Enantioselective Synthesis of Homoallylic Alcohols Bearing a Z-Alkenyl Chloride or Trifluoromethyl Group. A Concise and Protecting Group-Free Synthesis of Mycothiazole》, the research content is summarized as follows. A protecting group-free strategy is presented for diastereo- and enantioselective routes that can be used to prepare a wide variety of Z-homoallylic alcs. with significantly higher efficiency than is otherwise feasible. The approach entails the merger of several catalytic processes and is expected to facilitate the preparation of bioactive organic mols. More specifically, Z-chloro-substituted allylic pinacolatoboronate is first obtained through stereoretentive cross-metathesis between Z-crotyl-B(pin) (pin = pinacolato) and Z-dichloroethene, both of which are com. available. The organoboron compound may be used in the central transformation of the entire approach, an α- and enantioselective addition to an aldehyde, catalyzed by a proton-activated, chiral aminophenol-boryl catalyst. Catalytic cross-coupling can then furnish the desired Z-homoallylic alc. in high enantiomeric purity. The olefin metathesis step can be carried out with substrates and a Mo-based complex that can be purchased. The aminophenol compound that is needed for the second catalytic step can be prepared in multigram quantities from inexpensive starting materials. A significant assortment of homoallylic alcs. bearing a Z-F3C-substituted alkene can also be prepared with similar high efficiency and regio-, diastereo-, and enantioselectivity. What is more, trisubstituted Z-alkenyl chloride moiety can be accessed with similar efficiency albeit with somewhat lower α-selectivity and enantioselectivity. The general utility of the approach is underscored by a succinct, protecting group-free, and enantioselective total synthesis of mycothiazole, a naturally occurring anticancer agent through a sequence that contains a longest linear sequence of nine steps (12 steps total), seven of which are catalytic, generating mycothiazole in 14.5% overall yield.

Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lu, Yi team published research in Journal of the American Chemical Society in 2021 | 72824-04-5

Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 72824-04-5, formula is C9H17BO2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Lu, Yi;Sugita, Hajime;Mikami, Koichiro;Aoki, Daisuke;Otsuka, Hideyuki research published 《 Mechanochemical Reactions of Bis(9-methylphenyl-9-fluorenyl) Peroxides and Their Applications in Cross-Linked Polymers》, the research content is summarized as follows. The exploration of mechanochem. reactions has brought new opportunities for the design of functional materials. The authors synthesized the novel organic peroxide mechanophore bis(9-methylphenyl-9-fluorenyl) peroxide (BMPF) and examined its mechanochromic properties. The mechanism behind its mechanofluorescence was clarified and harnessed in polymer networks that can release the small fluorescent mol. 9-fluorenone upon exposure to a mech. stimulus. Addnl., polymer networks crosslinked with BMPF units are able to tolerate temperatures up to 110°C without any change in optical properties or mech. strength. As mechanophores based on organic peroxide have rarely been documented so far, these fascinating results suggest excellent potential for applications of BMPF in stress-responsive materials. The mechanochem. protocol demonstrated here may provide guiding principles to expand the field of mechanochromic peroxides.

Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lv, Leiyang team published research in ACS Catalysis in 2022 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Electric Literature of 72824-04-5

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Electric Literature of 72824-04-5

Lv, Leiyang;Qian, Huijun;Crowell, Anna B.;Chen, Shuming;Li, Zhiping research published 《 Pd/NHC-Controlled Regiodivergent Defluorinative Allylation of gem-Difluorocyclopropanes with Allylboronates》, the research content is summarized as follows. Controlling the selectivity of synthetically useful reactions has been a longstanding objective of organic chem. Authors report a regiodivergent synthetic protocol allowing access to diverse fluorinated 1,5-dienes through Pd/NHC-catalyzed ring-opening allylation of gem-difluorocyclopropanes. D. functional theory (DFT) calculations on regioselectivity-determining transition states provided critical insight into the design of the NHC ligand for switching regioselectivity. Consistent with the DFT predictions, N-heterocyclic carbene (NHC) ligands with bulky ortho substituents favored branched allylation, with the IHept ligand providing > 20:1 branched/linear regioselectivity. NHC ligands with less hindered ortho substituents such as IMes favored the thermodynamically more stable linear products. Authors were able to carry out late-stage modification of various complex mols. using this protocol. Authors ligand-controlled approach provides efficient access to regioisomeric fluorinated 1,5-dienes from the same starting materials and constitutes a valuable addition to the toolbox of diversity-oriented synthesis.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Electric Literature of 72824-04-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lopez-Grancha, Matilde team published research in Journal of Pharmacology and Experimental Therapeutics in 2021 | 72824-04-5

Application In Synthesis of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 72824-04-5, formula is C9H17BO2, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Application In Synthesis of 72824-04-5

Lopez-Grancha, Matilde;Bernardelli, Patrick;Moindrot, Nicolas;Genet, Elisabeth;Vincent, Carine;Roudieres, Valerie;Krick, Alain;Sabuco, Jean-Francois;Machnik, David;Ibghi, Delphine;Pradier, Laurent;Taupin, Veronique research published 《 A novel selective PKR inhibitor restores cognitive deficits and neurodegeneration in Alzheimer disease experimental models》, the research content is summarized as follows. In Alzheimer disease (AD), the double-strand RNA-dependent kinase protein kinase R (PKR )/EIF2AK2 is activated in brain with increased phosphorylation of its substrate eukaryotic initiation factor 2α (eIF2α). AD risk-promoting factors, such as ApoE4 allele or the accumulation of neurotoxic amyloid-β oligomers (AβOs), have been associated with activation of PKR-dependent signaling. Here, we report the discovery of a novel potent and selective PKR inhibitor (SAR439883) and demonstrate its neuroprotective pharmacol. activity in AD exptl. models. In ApoE4 human replacement male mice, 1-wk oral treatment with SAR439883 rescued short-term memory impairment in the spatial object recognition test and dose-dependently reduced learning and memory deficits in the Barnes maze test. Moreover, in AβO-injected male mice, a 2-wk administration of SAR439883 in diet dose-dependently ameliorated the AβO-induced cognitive impairment in both Y-maze and Morris Water Maze, prevented loss of synaptic proteins, and reduced levels of the proinflammatory cytokine interleukin-1β. In both mouse models, these effects were associated with a dose-dependent inhibition of brain PKR activity as measured by both PKR occupancy and partial lowering of peIF2α levels. Our results provide evidence that selective pharmacol. inhibition of PKR by a small selective mol. can rescue memory deficits and prevent neurodegeneration in animal models of AD-like pathol., suggesting that inhibition of PKR is a potential therapeutic approach for AD.

Application In Synthesis of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Zhiyang team published research in Chemical Science in 2021 | 72824-04-5

Category: alcohols-buliding-blocks, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

In general, the hydroxyl group makes alcohols polar. 72824-04-5, formula is C9H17BO2, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Category: alcohols-buliding-blocks

Li, Zhiyang;Li, Yichen;Li, Xingguang;Wu, Mandi;He, Ming-Liang;Sun, Jianwei research published 《 Organocatalytic asymmetric formal oxidative coupling for the construction of all-aryl quaternary stereocenters》, the research content is summarized as follows. A new catalytic asym. formal cross dehydrogenative coupling process for the construction of all-aryl quaternary stereocenters was disclosed, which provides access to rarely explored chiral tetraarylmethanes with excellent enantioselectivity. The suitable oxidation conditions and the hydrogen-bond-based organocatalysis was enabled efficient intermol. C-C bond formation in an overwhelmingly crowded environment under mild conditions. para-Quinone methides bearing an ortho-directing group serve as the key intermediate. The precise loading of DDQ was critical to the high enantioselectivity. The chiral products were also demonstrated as promising antiviral agents.

Category: alcohols-buliding-blocks, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liautard, Virginie team published research in Chemical Communications (Cambridge, United Kingdom) in 2022 | 72824-04-5

Product Details of C9H17BO2, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 72824-04-5, formula is C9H17BO2, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Product Details of C9H17BO2

Liautard, Virginie;Delgado, Marine;Colin, Boris;Chabaud, Laurent;Michaud, Guillaume;Pucheault, Mathieu research published 《 In situ generation of radical initiators using amine-borane complexes for carbohalogenation of alkenes》, the research content is summarized as follows. Atom transfer radical addition of alkyl halides to alkenes was developed using a low amount of a stable initiator, amine borane complexes. Thanks to a slow hydroboration step, the overall carbohalogenation process led to good isolated yields.

Product Details of C9H17BO2, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts