Liu, Dong et al. published their research in Angewandte Chemie, International Edition in 2021 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.SDS of cas: 68716-49-4

Nickel-Catalyzed N-Arylation of NH-Sulfoximines with Aryl Halides via Paired Electrolysis was written by Liu, Dong;Liu, Zhao-Ran;Ma, Cong;Jiao, Ke-Jin;Sun, Bing;Wei, Lei;Lefranc, Julien;Herbert, Simon;Mei, Tian-Sheng. And the article was included in Angewandte Chemie, International Edition in 2021.SDS of cas: 68716-49-4 This article mentions the following:

A novel strategy for the N-arylation of NH-sulfoximines has been developed by merging nickel catalysis and electrochem. (in an undivided cell), thereby providing a practical method for the construction of sulfoximine derivatives Paired electrolysis is employed in this protocol, so a sacrificial anode is not required. Owing to the mild reaction conditions, excellent functional group tolerance and yield are achieved. A preliminary mechanistic study indicates that the anodic oxidation of a NiII species is crucial to promote the reductive elimination of a C-N bond from the resulting NiIII species at room temperature In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4SDS of cas: 68716-49-4).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.SDS of cas: 68716-49-4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhu, Chen et al. published their research in CCS Chemistry in 2020 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Product Details of 68716-49-4

Merging electrolysis and nickel catalysis in redox neutral cross-coupling reactions: Experiment and computation for electrochemically induced C-P and C-Se bonds formation was written by Zhu, Chen;Yue, Huifeng;Nikolaienko, Pavlo;Rueping, Magnus. And the article was included in CCS Chemistry in 2020.Product Details of 68716-49-4 This article mentions the following:

The authors have achieved a nickel-catalyzed cross-coupling reaction via concerted paired electrolysis under mild reaction conditions. In this electrochem. transformation, the anodic oxidation of Ni(II) to Ni(III) and cathodic reduction of Ni(I) to Ni(0) occurred simultaneously, resulting in an economical and sustainable cross-coupling protocol. Moreover, mechanistic investigations were performed utilizing experiments and d. functional theory (DFT) calculations for different C-heteroatom bond formations to reveal the catalytic cycle in more detail. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4Product Details of 68716-49-4).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Product Details of 68716-49-4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Tang, Shi et al. published their research in Angewandte Chemie, International Edition in 2021 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C12H16BBrO2

Radical 1,4-Aryl Migration Enabled Remote Cross-Electrophile Coupling of 伪-Amino-尾-Bromo Acid Esters with Aryl Bromides was written by Tang, Shi;Xu, Zhen-Hua;Liu, Ting;Wang, Shuo-Wen;Yu, Jian;Liu, Jian;Hong, Yu;Chen, Shi-Lu;He, Jin;Li, Jin-Heng. And the article was included in Angewandte Chemie, International Edition in 2021.COA of Formula: C12H16BBrO2 This article mentions the following:

Here an unprecedented, efficient nickel-catalyzed radical relay was reported for the remote cross-electrophile coupling of 尾-bromo-伪-benzylamino acid esters with aryl bromides via 1,4-aryl migration/arylation cascades. 尾-Bromo-伪-benzylamino acid esters were considered as unique mol. scaffolds allowing for aryl migration reactions, which were conceptually novel variants for the radical Truce-Smiles rearrangement. This reaction enabled the formation of two new C(sp3)-C(sp2) bonds using a bench-stable Ni/bipyridine/Zn system featuring a broad substrate scope and excellent diastereoselectivity, which provided an effective platform for the remote aryl group migration and arylation of amino acid esters via redox-neutral C(sp3)-C(sp2) bond cleavage. Mechanistically, this cascade reaction was accomplished by combining two powerful catalytic cycles consisting of a cross-electrophile coupling and radical 1,4-aryl migration through the generation of C(sp3)-centered radical intermediates from the homolysis of C(sp3)-Br bonds and the switching of the transient alkyl radical into a robust 伪-aminoalkyl radical. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4COA of Formula: C12H16BBrO2).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C12H16BBrO2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Mateos-Gil, Jaime et al. published their research in Angewandte Chemie, International Edition in 2020 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application In Synthesis of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Synthesis and Functionalization of Allenes by Direct Pd-Catalyzed Organolithium Cross-Coupling was written by Mateos-Gil, Jaime;Mondal, Anirban;Castineira Reis, Marta;Feringa, Ben L.. And the article was included in Angewandte Chemie, International Edition in 2020.Application In Synthesis of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane This article mentions the following:

A palladium-catalyzed cross-coupling between in situ generated allenyl/propargyl-lithium species and aryl bromides to yield highly functionalized allenes is reported. The direct and selective formation of allenic products preventing the corresponding isomeric propargylic product is accomplished by the choice of SPhos or XPhos based Pd catalysts. The methodol. avoids the prior transmetalation to other transition metals or reverse approaches that required prefunctionalization of substrates with leaving groups, resulting in a fast and efficient approach for the synthesis of tri- and tetrasubstituted allenes. Exptl. and theor. studies on the mechanism show catalyst control of selectivity in this allene formation. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4Application In Synthesis of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application In Synthesis of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sun, Shang-Zheng et al. published their research in Angewandte Chemie, International Edition in 2020 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Application In Synthesis of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Site-Selective 1,2-Dicarbofunctionalization of Vinyl Boronates through Dual Catalysis was written by Sun, Shang-Zheng;Duan, Yaya;Mega, Riccardo S.;Somerville, Rosie J.;Martin, Ruben. And the article was included in Angewandte Chemie, International Edition in 2020.Application In Synthesis of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane This article mentions the following:

A modular, site-selective photochem. 1,2-dicarbofunctionalization of vinyl boronate CH2:CHBpin with organic halides RBr and ArBr through dual catalysis afforded double addition products RCH2CHAr(Bpin) (4at; R = tBu, tertiary alkyl, cycloalkyl; Ar = substituted Ph, naphthyl). This reaction proceeds under mild conditions and is characterized by excellent chemo- and regioselectivity. It thus represents a complementary new technique for preparing densely functionalized alkyl boron architectures from simple and accessible precursors. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4Application In Synthesis of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Application In Synthesis of 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

You, Tian et al. published their research in Organic Letters in 2022 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.SDS of cas: 68716-49-4

Ni(cod)(duroquinone)-Catalyzed C-N Cross-Coupling for the Synthesis of N,N-Diarylsulfonamides was written by You, Tian;Li, Junqi. And the article was included in Organic Letters in 2022.SDS of cas: 68716-49-4 This article mentions the following:

A C-N cross-coupling reaction of weakly nucleophilic N-arylsulfonamides and aryl bromides to access N,N-diarylsulfonamides RR1NSO2R2 [R = n-Bu, Ph, 4-MeOC6H4, 4-F3CC6H4; R1 = Ph, 4-ClC6H4, 3-furyl, etc.; R2 = cyclopropyl, 4-MeC6H4, 4-PhC6H4, etc.] using Ni(cod)(DQ) as a catalyst without addnl. ligands was reported. The process was compatible with electron-deficient and electron-rich aryl and heteroaryl bromides and could be applied to the derivatization of an N-arylsulfonamide pharmaceutical compound In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4SDS of cas: 68716-49-4).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.SDS of cas: 68716-49-4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Song, Geyang et al. published their research in Journal of Organic Chemistry in 2022 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Category: alcohols-buliding-blocks

General Method for the Amination of Aryl Halides with Primary and Secondary Alkyl Amines via Nickel Photocatalysis was written by Song, Geyang;Nong, Ding-Zhan;Li, Jing-Sheng;Li, Gang;Zhang, Wei;Cao, Rui;Wang, Chao;Xiao, Jianliang;Xue, Dong. And the article was included in Journal of Organic Chemistry in 2022.Category: alcohols-buliding-blocks This article mentions the following:

It was reported that Ni(II)-bipyridine complex catalyzed efficient C-N coupling of aryl chlorides and bromides with various primary and secondary alkyl amines under direct excitation with light. Intramol. C-N coupling was also demonstrated. The feasibility and applicability of the protocol in organic synthesis was attested by more than 200 examples. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4Category: alcohols-buliding-blocks).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gong, Yuxin et al. published their research in Angewandte Chemie, International Edition in 2022 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Category: alcohols-buliding-blocks

Nickel-Catalyzed Thermal Redox Functionalization of C(sp3)-H Bonds with Carbon Electrophiles was written by Gong, Yuxin;Su, Lei;Zhu, Zhaodong;Ye, Yang;Gong, Hegui. And the article was included in Angewandte Chemie, International Edition in 2022.Category: alcohols-buliding-blocks This article mentions the following:

A Ni-catalyzed arylation and alkylation of C(sp3)-H bonds with organohalides to forge C(sp3)-C bonds by merging economical Zn and tBuOOtBu (DTBP) as the external reductant and oxidant was reported. The mild and easy-to-operate protocol enabled facile carbofunctionalization of N-/O-伪- and cyclohexane C-H bonds, and preparation of a few intermediates of bioactive compounds and drug derivatives Preliminary mechanistic studies implied addition of an alkyl radical to a NiII salt. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4Category: alcohols-buliding-blocks).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sato, Yukiya et al. published their research in Organic & Biomolecular Chemistry in 2020 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C12H16BBrO2

Boracene-based alkylborate enabled Ni/Ir hybrid catalysis was written by Sato, Yukiya;Miyamoto, Yusuke;Sumida, Yuto;Hosoya, Takamitsu;Ohmiya, Hirohisa. And the article was included in Organic & Biomolecular Chemistry in 2020.COA of Formula: C12H16BBrO2 This article mentions the following:

Boracene-based alkylborate enabled visible light-mediated metallaphotoredox catalysis. The directly excited borate was easily oxidatively quenched by an excited Ir photoredox catalyst. Ni/Ir hybrid catalysis afforded the products under significantly low irradiance. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4COA of Formula: C12H16BBrO2).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C12H16BBrO2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Dong et al. published their research in Angewandte Chemie, International Edition in 2021 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.SDS of cas: 68716-49-4

Nickel-Catalyzed N-Arylation of NH-Sulfoximines with Aryl Halides via Paired Electrolysis was written by Liu, Dong;Liu, Zhao-Ran;Ma, Cong;Jiao, Ke-Jin;Sun, Bing;Wei, Lei;Lefranc, Julien;Herbert, Simon;Mei, Tian-Sheng. And the article was included in Angewandte Chemie, International Edition in 2021.SDS of cas: 68716-49-4 This article mentions the following:

A novel strategy for the N-arylation of NH-sulfoximines has been developed by merging nickel catalysis and electrochem. (in an undivided cell), thereby providing a practical method for the construction of sulfoximine derivatives Paired electrolysis is employed in this protocol, so a sacrificial anode is not required. Owing to the mild reaction conditions, excellent functional group tolerance and yield are achieved. A preliminary mechanistic study indicates that the anodic oxidation of a NiII species is crucial to promote the reductive elimination of a C-N bond from the resulting NiIII species at room temperature In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4SDS of cas: 68716-49-4).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.SDS of cas: 68716-49-4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts