Hussain, Anwar et al. published their research in RSC Advances in 2021 | CAS: 65-22-5

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

A highly selective pyridoxal-based chemosensor for the detection of Zn(II) and application in live-cell imaging; X-ray crystallography of pyridoxal-TRIS Schiff-base Zn(II) and Cu(II) complexes was written by Hussain, Anwar;Mariappan, Kadarkaraisamy;Cork, Dawson C.;Lewandowski, Luke D.;Shrestha, Prem K.;Giri, Samiksha;Wang, Xuejun;Sykes, Andrew G.. And the article was included in RSC Advances in 2021.Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride The following contents are mentioned in the article:

In a simple, one-step reaction, we have synthesized a pyridoxal-based chemosensor by reacting tris(hydroxymethyl)aminomethane (TRIS) together with pyridoxal hydrochloride to yield a Schiff-base ligand that is highly selective for the detection of Zn(II) ion. Both the ligand and the Zn(II) complex have been characterized by 1H & 13C NMR, ESI-MS, CHN analyses, and X-ray crystallog. The optical properties of the synthesized ligand were investigated in an aqueous buffer solution and found to be highly selective and sensitive toward Zn(II) ion through a fluorescence turn-on response. The competition studies reveal the response for zinc ion is unaffected by all alkali and alk. earth metals; and suppressed by Cu(II) ion. The ligand itself shows a weak fluorescence intensity (quantum yield, Φ = 0.04), and the addition of zinc ion enhanced the fluorescence intensity 12-fold (quantum yield, Φ = 0.48). The detection limit for zinc ion was 2.77 x 10-8 M, which is significantly lower than the WHO′s guideline (76.5 μM). Addition of EDTA to a solution containing the ligand-Zn(II) complex quenched the fluorescence, indicating the reversibility of Zn(II) binding. Stoichiometric studies indicated the formation of a 2 : 1 L2Zn complex with a binding constant of 1.2 x 109 M-2 (±25%). The crystal structure of the zinc complex shows the same hydrated L2Zn complex, with Zn(II) ion binding with an octahedral coordination geometry. We also synthesized the copper(II) complex of the ligand, and the crystal structure showed the formation of a 1 : 1 adduct, revealing 1-dimensional polymeric networks with octahedral coordinated Cu(II). The ligand was employed as a sensor to detect zinc ion in HEK293 cell lines derived from human embryonic kidney cells grown in tissue culture which showed strong luminescence in the presence of Zn(II). We believe that the outstanding turn-on response, sensitivity, selectivity, lower detection limit, and reversibility toward zinc ion will find further application in chem. and biol. science. This study involved multiple reactions and reactants, such as 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride).

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ramilo-Gomes, Filipa et al. published their research in Journal of Inorganic Biochemistry in 2021 | CAS: 65-22-5

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Synthetic Route of C8H10ClNO3

Antimicrobial and antitumor activity of S-methyl dithiocarbazate Schiff base zinc(II) complexes was written by Ramilo-Gomes, Filipa;Addis, Yemataw;Tekamo, Israel;Cavaco, Isabel;Campos, Debora L.;Pavan, Fernando R.;Gomes, Clara S. B.;Brito, Vanessa;Santos, Adriana O.;Domingues, Fernanda;Luis, Angelo;Marques, M. Matilde;Pessoa, Joao Costa;Ferreira, Susana;Silvestre, Samuel;Correia, Isabel. And the article was included in Journal of Inorganic Biochemistry in 2021.Synthetic Route of C8H10ClNO3 The following contents are mentioned in the article:

Schiff bases (SB) obtained from S-Me dithiocarbazate and aromatic aldehydes: salicylaldehyde (H2L1), o-vanillin (H2L2), pyridoxal (H2L3) and 2,6-diformyl-4-methylphenol (H3L4), and their corresponding zinc complexes (14), were synthesized. All compounds were characterized by elemental analyses, IR, UV-visible, NMR spectroscopy and mass spectrometry. The structures of H2L2 and [Zn2(L1)2(H2O)(DMF)] (1a) are solved by single crystal x-ray diffraction. The SB coordinates the metal center through the Ophenolate, Nimine and Sthiolate atoms. The radical scavenging activity is tested using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, with all ligand precursors showing IC50 values ∼40μM. Cytotoxicity studies with several tumor cell lines (PC-3, MCF-7 and Caco-2) as well as a nontumoral cell line (NHDF) are reported. 1 Has relevant and selective antiproliferative effect against Caco-2 cells (IC50 = 9.1μM). Their antimicrobial activity is evaluated in five bacterial strains (Klebsiella pneumoniae, Acinetobacter baumannii, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus) and two yeast strains (Candida albicans and Candida tropicalis) with some compounds showing bacteriostatic and fungicidal activity. The minimal inhibitory concentration (MIC90) of HnL against Mycobacterium tuberculosis is also reported, with H2L2 and H3L4 showing very high activity (MIC90 < 0.6μg/mL). The ability of the compounds to bind bovine serum albumin (BSA) and DNA is evaluated for H3L4 and [Zn2(L4)(CH3COO)] (4), both showing high binding constants to BSA (∼106 M-1) and ability to bind DNA. Overall, the reported compounds show relevant antitumor and antimicrobial properties, the authors’ data indicating they may be promising compounds in several fields of medicinal chem. This study involved multiple reactions and reactants, such as 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5Synthetic Route of C8H10ClNO3).

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Synthetic Route of C8H10ClNO3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Adak, Piyali et al. published their research in RSC Advances in 2016 | CAS: 65-22-5

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Reference of 65-22-5

Catecholase activity, DNA binding and cytotoxicity studies of a Cu(II) complex of a pyridoxal Schiff base: synthesis, x-ray crystal structure, spectroscopic, electrochemical and theoretical studies was written by Adak, Piyali;Ghosh, Bipinbihari;Bauza, Antonio;Frontera, Antonio;Blake, Alexander J.;Corbella, Montserrat;Das Mukhopadhyay, Chitrangada;Chattopadhyay, Shyamal Kumar. And the article was included in RSC Advances in 2016.Reference of 65-22-5 The following contents are mentioned in the article:

A binuclear Cu(II) complex [Cu(L1Hpy)Cl]2(ClO4)2 (1), where L1H2 is a new tridentate ligand, formed by condensation of 2-aminomethylpyridine and pyridoxal (one of the forms of vitamin B6), was synthesized. X-ray crystal structure determination shows that in this complex two Cu(II) ions are interconnected by complementary hydroxymethyl bridges of the two pyridoxal moieties, which is a very rare example in the literature. However, with a Cu···Cu separation of 6.574(1) Å and Cu-O(H)CH2– distance of 2.289 Å, the bridge is very weak, and DFT calculations, as well as ESI-MS data and solution spectral studies indicate that in a MeOH solution the complex exists predominantly as a mixture of monomers [Cu(L1Hpy)Cl]+ and [Cu(L1Hpy)(MeOH)]2+ with the former being the predominant form. The DFT calculations as well as EPR spectra suggest that the SOMO is a metal dx2-y2 orbital. The complex shows highly efficient catecholase activity with kcat = 3·46 × 105 h-1 and kcat/KM = 1.00 × 108 M-1 h-1, which are the best values reported in the literature, so far, for catecholase mimicking model complexes. DFT calculations show that the reduction of the Cu(II)/Cu(I) by the coordinated catechol and the resultant structural changes is the rate determining step in the catalytic cycle. The complex also binds DNA quite strongly with a binding constant of ∼105 M-1. DFT calculations suggest that the most probable binding mode of the complex is intercalation of the pyridine ring of the complex between two adenine or adenine and cytosine base pairs. The complex shows low cytotoxicity towards HCT and HeLa cells, though cytotoxicity towards the latter cell line is much higher than the former. Also the complex can be used as a fluorescence probe for imaging HCT cells. This study involved multiple reactions and reactants, such as 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5Reference of 65-22-5).

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Reference of 65-22-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Aqeel, Yousuf et al. published their research in Antimicrobial Agents and Chemotherapy in 2016 | CAS: 65-22-5

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.COA of Formula: C8H10ClNO3

Gold nanoparticle conjugation enhances the antiacanthamoebic effects of chlorhexidine was written by Aqeel, Yousuf;Siddiqui, Ruqaiyyah;Anwar, Ayaz;Shah, Muhammad Raza;Khan, Naveed Ahmed. And the article was included in Antimicrobial Agents and Chemotherapy in 2016.COA of Formula: C8H10ClNO3 The following contents are mentioned in the article:

Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiol. relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using at. force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric anal. using propidium iodide, while amoebistatic effects were observed using growth assays. In contrast, chlorhexidine alone, at a similar concentration, showed limited effects. Notably, neomycin alone or conjugated with nanoparticles did not show amoebicidal or amoebistatic effects. Pretreatment of A. castellanii with gold-conjugated chlorhexidine nanoparticles reduced amoeba-mediated host cell cytotoxicity from 90% to 40% at 5 μM. In contrast, chlorhexidine alone, at similar concentrations, had no protective effects for the host cells. Similarly, amoebae treated with neomycin alone or neomycin-conjugated nanoparticles showed no protective effects. Overall, these findings suggest that gold-conjugated chlorhexidine nanoparticles hold promise in the improved treatment of A. castellanii keratitis. This study involved multiple reactions and reactants, such as 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5COA of Formula: C8H10ClNO3).

3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.COA of Formula: C8H10ClNO3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts