Guo, Weiwei team published research on Green Chemistry in 2020 | 647-42-7

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Product Details of C8H5F13O

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 647-42-7, formula is C8H5F13O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Product Details of C8H5F13O

Guo, Weiwei;Zhang, Qi;Cao, Yang;Cai, Kaihua;Zhang, Shengyong;Chai, Yonghai research published 《 Environmentally benign access to isoindolinones: synthesis, separation and resource recycling》, the research content is summarized as follows. A green and facile approach for the straightforward installation of isoindolinone skeletons via a tandem reaction of 2-cyanobenzaldehydes and α,β-unsaturated ketones/esters. In the presence of catalytic amounts of the organocatalyst, fluorous phosphine, in green solvents at rt, a variety of isoindolinones were obtained in good to excellent yields without tedious column chromatog. Moreover, both the catalyst and the solvents were recycled, which greatly reduced the consumption and waste of resources. The simplicity of manipulation, high efficiency of resource utilization and environmentally benign characteristics enable this protocol to have broad applications in the synthesis of isoindolinones, especially those for drug discovery.

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Product Details of C8H5F13O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hall, Samantha M. team published research on Environmental Science & Technology in 2020 | 647-42-7

Name: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 647-42-7, formula is C8H5F13O, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Name: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

Hall, Samantha M.;Patton, Sharyle;Petreas, Myrto;Zhang, Sharon;Phillips, Allison L.;Hoffman, Kate;Stapleton, Heather M. research published 《 Per- and polyfluoroalkyl substances in dust collected from residential homes and fire stations in North America》, the research content is summarized as follows. Over the past few years, human exposure to per- and polyfluoroalkyl substances (PFAS) has garnered increased attention. Research has focused on PFAS exposure via drinking water and diet, and fewer studies have focused on exposure in the indoor environment. To support more research on the latter exposure pathway, we conducted a study to evaluate PFAS in indoor dust. Dust samples from 184 homes in North Carolina and 49 fire stations across the United States and Canada were collected and analyzed for a suite of PFAS using liquid and gas chromatog.-mass spectrometry. Fluorotelomer alcs. (FTOHs) and di-polyfluoroalkyl phosphoric acid esters (diPAPs) were the most prevalent PFAS in both fire station and house dust samples, with medians of approx. 100 ng/g dust or greater. Notably, perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate, perfluorononanoic acid, and 6:2 diPAP were significantly higher in dust from fire stations than from homes, and 8:2 FTOH was significantly higher in homes than in fire stations. Addnl., when comparing our results to earlier published values, we see that perfluoroalkyl acid levels in residential dust appear to decrease over time, particularly for PFOA and PFOS. These results highlight a need to better understand what factors contribute to PFAS levels in dust and to understand how much dust contributes to overall human PFAS exposure.

Name: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gao, Pengli team published research on Bioconjugate Chemistry in 2020 | 647-42-7

Product Details of C8H5F13O, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 647-42-7, formula is C8H5F13O, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Product Details of C8H5F13O

Gao, Pengli;Liu, Shi;Su, Ya;Zheng, Min;Xie, Zhigang research published 《 Fluorine-doped carbon dots with intrinsic nucleus-targeting ability for drug and dye delivery》, the research content is summarized as follows. A new type of fluorine-doped carbon dots (FCDs) with the nucleus-targeting capability was prepared and utilized as a promising candidate for drug and dye delivery. Doxorubicin (DOX) and boron dipyrromethene (BODIPY) was used as a model drug and dye, resp., to construct FCD-DOX and FCD-BODIPY nanocomposites via coassembly with FCDs. The results demonstrate that FCDs can remarkably increase the cellular uptake and delivery of DOX and BODIPY. This work developed a convenient strategy to construct CDs-based nanohybrids for nucleus-targeted bioimaging and cancer treatment.

Product Details of C8H5F13O, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Egert, Thomas team published research on European Journal of Pharmaceutical Sciences in 2022 | 647-42-7

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Formula: C8H5F13O

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 647-42-7, formula is C8H5F13O, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Formula: C8H5F13O

Egert, Thomas;Langowski, Horst-Christian research published 《 Linear solvation energy relationships (LSERs) for robust prediction of partition coefficients between low density polyethylene and water. Part I: Experimental partition coefficients and model calibration》, the research content is summarized as follows. When equilibrium of leaching is reached within a product′s duty cycle, partition coefficients polymer/solution dictate the maximum accumulation of a leachable and thus, patient exposure by leachables. Yet, in the pharmaceutical and food industry, exposure estimates based on predictive modeling typically rely on coarse estimations of the partition coefficient, with accurate and robust models lacking. This first part of the study aimed to investigate linear solvation energy relationships (LSERs) as high performing models for the prediction of partition coefficients polymer/water. For this, partition coefficients between low d. polyethylene (LDPE) and aqueous buffers for 159 compounds spanning a wide range of chem. diversity, mol. weight, vapor pressure, aqueous solubility and polarity (hydrophobicity) were determined and complimentary data collected from the literature (n=159, MW: 32 to 722, logKi,O/W: -0.72 to 8.61 and logKi,LDPE/W: -3.35 up to 8.36). The chem. space represented by this compounds set is considered indicative for the universe of compounds potentially leaching from plastics. Based on the dataset for the LDPE material purified by solvent extraction, a LSER model for partitioning between LDPE and water was calibrated to give:logKi,LDPE/W = – 0.529 + 1.098Ei – 1.557Si – 2.991Ai – 4.617Bi + 3.886Vi. The model was proven accurate and precise (n = 156, R2 = 0.991, RMSE = 0.264). Further, it was demonstrated superior over a log-linear model fitted to the same data. Nonetheless, it could be shown that log-linear correlations against logKi,O/W can be of value for the estimation of partition coefficients for nonpolar compounds exhibiting low hydrogen-bonding donor and/or acceptor propensity. For nonpolar compounds, the log – linear model was found as: logKi,LDPE/W = 1.18logKi,O/W – 1.33 (n = 115, R2 = 0.985, RMSE=0.313). In contrast, with mono-/bipolar compounds included into the regression data set, an only weak correlation was observed (n= 156, R2 = 0.930, RMSE = 0.742) rendering the log-linear model of more limited value for polar compounds Notably, sorption of polar compounds into pristine (non-purified) LDPE was found to be up to 0.3 log units lower than into purified LDPE. To identify maximum (i.e. worst-case) levels of leaching in support of chem. safety risk assessments on systems attaining equilibrium before end of shelf-life, it appears adequate to utilize LSER – calculated partition coefficients (in combination with solubility data) by ignoring any kinetical information.

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Formula: C8H5F13O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Eid, Nadim team published research on Polymer Chemistry in 2021 | 647-42-7

Related Products of 647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 647-42-7, formula is C8H5F13O, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Related Products of 647-42-7

Eid, Nadim;Ameduri, Bruno;Gimello, Olinda;Bonnet, Anthony;Devisme, Samuel research published 《 Vinylidene fluoride polymerization by metal-free selective activation of hydrogen peroxide: microstructure determination and mechanistic study》, the research content is summarized as follows. Hydrogen peroxide-initiated radical polymerization of vinylidene fluoride (VDF) at 130°C in di-Me carbonate is presented. Various reaction parameters such as the nature of the solvent, the nature and the amount of the additive, and the reaction temperature were optimized. Hydrogen peroxide was activated with azobisisobutyronitrile (AIBN), which was not able to initiate the radical polymerization of VDF but afforded hydroxyl radicals via selective homolytic cleavage of the O-O bond of H2O2. The reactivity of hydroxyl radicals with the different components of the medium was evaluated. The microstructure of the resulting PVDFs was determined by NMR spectroscopy and MALDI-TOF spectrometry. Seven different chain-ends were identified and could be well revealed from synthesized models: 60% were functional, e.g., carbonates, alcs., carboxylic acids and fluorinated olefins, whereas 40% were CF2H and CF2CH3 fluoroalkyls as the products of hydrogen transfer termination reactions. Finally, based on the collected exptl. data, a mechanistic pathway of the polymerization was proposed in order to explain the formation of such different functional and non-functional end-groups. In addition, the selectivity of the different radical additions onto VDF was studied and is discussed.

Related Products of 647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Evans, Nicola team published research on Toxicology and Applied Pharmacology in 2022 | 647-42-7

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Product Details of C8H5F13O

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 647-42-7, formula is C8H5F13O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Product Details of C8H5F13O

Evans, Nicola;Conley, Justin M.;Cardon, Mary;Hartig, Phillip;Medlock-Kakaley, Elizabeth;Gray, L. Earl Jr research published 《 In vitro activity of a panel of per- and polyfluoroalkyl substances (PFAS), fatty acids, and pharmaceuticals in peroxisome proliferator-activated receptor (PPAR) alpha, PPAR gamma, and estrogen receptor assays》, the research content is summarized as follows. Data demonstrate numerous per- and polyfluoroalkyl substances (PFAS) activate peroxisome proliferator-activated receptor alpha (PPARα), however, addnl. work is needed to characterize PFAS activity on PPAR gamma (PPARγ) and other nuclear receptors. We utilized in vitro assays with either human or rat PPARα or PPARγ ligand binding domains to evaluate 16 PFAS (HFPO-DA, HFPO-DA-AS, NBP2, PFMOAA, PFHxA, PFOA, PFNA, PFDA, PFOS, PFBS, PFHxS, PFOSA, EtPFOSA, and 4:2, 6:2 and 8:2 FTOH), 3 endogenous fatty acids (oleic, linoleic, and octanoic), and 3 pharmaceuticals (WY14643, clofibrate, and the metabolite clofibric acid). We also tested chems. for human estrogen receptor (hER) transcriptional activation. Nearly all compounds activated both PPARα and PPARγ in both human and rat ligand binding domain assays, except for the FTOH compounds and PFOSA. Receptor activation and relative potencies were evaluated based on effect concentration 20% (EC20), top percent of max fold induction (pmaxtop), and area under the curve (AUC). HFPO-DA and HFPO-DA-AS were the most potent (lowest EC20, highest pmaxtop and AUC) of all PFAS in rat and human PPARα assays, being slightly less potent than oleic and linoleic acid, while NBP2 was the most potent in rat and human PPARγ assays. Only PFHxS, 8:2 and 6:2 FTOH exhibited hER agonism >20% pmax. In vitro measures of human and rat PPARαand PPARγ activity did not correlate with oral doses or serum concentrations of PFAS that induced increases in male rat liver weight from the National Toxicol. Program 28-d toxicity studies. Data indicate that both PPARα and PPARγ activation may be mol. initiating events that contribute to the in vivo effects observed for many PFAS.

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Product Details of C8H5F13O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Farley, Sean team published research on Lab on a Chip in 2021 | 647-42-7

Related Products of 647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 647-42-7, formula is C8H5F13O, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Related Products of 647-42-7

Farley, Sean;Ramsay, Kaitlyn;Elvira, Katherine S. research published 《 A plug-and-play modular microcapillary platform for the generation of multicompartmental double emulsions using glass or fluorocarbon capillaries》, the research content is summarized as follows. Although multiple emulsions have a wide range of applications in biol., medicine, chem. and cosmetics, the use of microfluidic devices to generate them remains limited to specialist laboratories This is because of the expertise required to design and operate these technologies. Here we show a plug-and-play microcapillary platform for the generation of multicompartmental double emulsions which only requires a low cost 3D printer for fabrication and syringe pumps for operation. Our microcapillary platform is modular because we fabricate junction boxes from a flexible resin to hold and align any type of standard glass capillary or piece of tubing for droplet formation without the need for capillary alignment. The flexible resin enables total sealing of the capillaries without the need for gaskets or adhesives, and the ability to use any type of capillary or tubing means that surface treatment is not required. We show how our microcapillary platform is able to generate water-in-oil-in-water, oil-in-water-in-oil, and oil-in-oil-in-water multicompartmental double emulsions with between 1 and 10 inner droplets with high accuracy and reproducibility using standard oils (FC40, mineral oil) and inexpensive surfactants (sodium dodecyl sulfate, SDS or 1H,1H,2H,2H-perfluoro-1-octanol, PFO). Addnl., we show the formation of binary multicompartmental double emulsions, where two types of inner phase droplets can be encapsulated in the multicompartmental emulsions. Our results demonstrate how simple and accessible tools can be employed to generate a powerful modular microcapillary platform. We anticipate that the simplicity of fabrication and operation of this platform, coupled with its ability to make a wide variety of different types of emulsions, will be attractive both to microfluidic laboratories and to those without microfluidic expertise who need an enabling tool for multicompartmental double emulsion formation.

Related Products of 647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Dhamodharan, Duraisami team published research on New Journal of Chemistry in 2022 | 647-42-7

Category: alcohols-buliding-blocks, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 647-42-7, formula is C8H5F13O, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Category: alcohols-buliding-blocks

Dhamodharan, Duraisami;Ghoderao, Pradnya NP;Park, Cheol-Woong;Byun, Hun-Soo research published 《 Bubble and dew-point measurement of mixtures of 1H,1H,2H-perfluoro-1-octene and 1H,1H,2H,2H-perfluoro-1-octanol in supercritical CO2》, the research content is summarized as follows. In this article, solubility data are presented for the fluoro-monomer (meth)acrylate, which plays an important role as an organic solvent in several industrial processes. High-pressure phase equilibrium for 1H,1H,2H-perfluoro-1-octene + supercritical CO2 (PFOe + Sc-CO2), and 1H,1H,2H,2H-perfluoro-1-octanol + Sc-CO2 (PFOl + Sc-CO2) models were assessed in a static device at different temperatures starting from 313.2 to 393.2 K and maximum pressure of about 17.22 MPa. Temperature-pressure (T-p) diagrams of the PFOe + Sc-CO2 and PFOl + Sc-CO2 systems show mixture-critical curves between the critical temperatures of CO2 and PFOe or CO2 and PFOl. The solubility of PFOe and PFOl in the two systems gradually increases with increasing temperature at constant pressure. The exptl. curves for the PFOe + Sc-CO2 and PFOl + Sc-CO2 binary models show phase behavior of curve type-I. Correlations of exptl. results for the PFOe + Sc-CO2 and PFOl + Sc-CO2 models are compared with the P-R EOS using mixing rules with two parameters (κij, ηij). The root mean squared deviation (RMSD) percentages (%) for the two systems using the optimum factors evaluated at 353.2 K were 2.19% for PFOl + Sc-CO2 and 5.30% for PFOe + Sc-CO2. The RMSD (%) for the PFOl + Sc-CO2 model evaluated by the alterable factor at each temperature was 2.78%.

Category: alcohols-buliding-blocks, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Doppler, Diandra team published research on Journal of Applied Crystallography in 2022 | 647-42-7

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Name: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 647-42-7, formula is C8H5F13O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Name: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

Doppler, Diandra;Rabbani, Mohammad T.;Letrun, Romain;Cruz Villarreal, Jorvani;Kim, Dai Hyun;Gandhi, Sahir;Egatz-Gomez, Ana;Sonker, Mukul;Chen, Joe;Koua, Faisal H. M.;Yang, Jayhow;Youssef, Mohamed;Mazalova, Victoria;Bajt, Sasa;Shelby, Megan L.;Coleman, Matt A.;Wiedorn, Max O.;Knoska, Juraj;Schon, Silvan;Sato, Tokushi;Hunter, Mark S.;Hosseinizadeh, Ahmad;Kuptiz, Christopher;Nazari, Reza;Alvarez, Roberto C.;Karpos, Konstantinos;Zaare, Sahba;Dobson, Zachary;Discianno, Erin;Zhang, Shangji;Zook, James D.;Bielecki, Johan;de Wijn, Raphael;Round, Adam R.;Vagovic, Patrik;Kloos, Marco;Vakili, Mohammad;Ketawala, Gihan K.;Stander, Natasha E.;Olson, Tien L.;Morin, Katherine;Mondal, Jyotirmory;Nguyen, Jonathan;Meza-Aguilar, Jose Domingo;Kodis, Gerdenis;Vaiana, Sara;Martin-Garcia, Jose M.;Mariani, Valerio;Schwander, Peter;Schmidt, Marius;Messerschmidt, Marc;Ourmazd, Abbas;Zatsepin, Nadia;Weierstall, Uwe;Bruce, Barry D.;Mancuso, Adrian P.;Grant, Thomas;Barty, Anton;Chapman, Henry N.;Frank, Matthias;Fromme, Raimund;Spence, John C. H.;Botha, Sabine;Fromme, Petra;Kirian, Richard A.;Ros, Alexandra research published 《 Co-flow injection for serial crystallography at X-ray free-electron lasers》, the research content is summarized as follows. Serial femtosecond crystallog. (SFX) is a powerful technique that exploits X-ray free-electron lasers to determine the structure of macromols. at room temperature Despite the impressive exposition of structural details with this novel crystallog. approach, the methods currently available to introduce crystals into the path of the X-ray beam sometimes exhibit serious drawbacks. Samples requiring liquid injection of crystal slurries consume large quantities of crystals (at times up to a gram of protein per data set), may not be compatible with vacuum configurations on beamlines or provide a high background due to addnl. sheathing liquids present during the injection. Proposed and characterized here is the use of an immiscible inert oil phase to supplement the flow of sample in a hybrid microfluidic 3D-printed co-flow device. Co-flow generation is reported with sample and oil phases flowing in parallel, resulting in stable injection conditions for two different resin materials exptl. A numerical model is presented that adequately predicts these flow-rate conditions. The co-flow generating devices reduce crystal clogging effects, have the potential to conserve protein crystal samples up to 95% and will allow degradation-free light-induced time-resolved SFX.

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Name: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Clark, Iain C. team published research on Analytical Chemistry (Washington, DC, United States) in 2020 | 647-42-7

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Category: alcohols-buliding-blocks

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 647-42-7, formula is C8H5F13O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Category: alcohols-buliding-blocks

Clark, Iain C.;Delley, Cyrille L.;Sun, Chen;Thakur, Rohan;Stott, Shannon L.;Thaploo, Shravan;Li, Zhaorong;Quintana, Francisco J.;Abate, Adam R. research published 《 Targeted Single-Cell RNA and DNA Sequencing With Fluorescence-Activated Droplet Merger》, the research content is summarized as follows. Analyzing every cell in a diverse sample provides insight into population-level heterogeneity, but abundant cell types dominate the anal. and rarer populations are scarcely represented in the data. To focus on specific cell types, the current paradigm is to phys. isolate subsets of interest prior to anal.; however, it remains difficult to isolate and then single-cell sequence such populations because of compounding losses. Here, we describe an alternative approach that selectively merges cells with reagents to achieve enzymic reactions without having to phys. isolate cells. We apply this technique to perform single-cell transcriptome and genome sequencing of specific cell subsets. Our method for analyzing heterogeneous populations obviates the need for pre- or post-enrichment and simplifies single-cell workflows, making it useful for other applications in single-cell biol., combinatorial chem. synthesis, and drug screening.

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts