Ding, Xiaowei’s team published research in Applied Microbiology and Biotechnology in 105 | CAS: 621-37-4

Applied Microbiology and Biotechnology published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, Related Products of alcohols-buliding-blocks.

Ding, Xiaowei published the artcileSugar and organic acid availability modulate soil diazotroph community assembly and species co-occurrence patterns on the Tibetan Plateau, Related Products of alcohols-buliding-blocks, the publication is Applied Microbiology and Biotechnology (2021), 105(21-22), 8545-8560, database is CAplus and MEDLINE.

Metabolites can mediate species interactions and the assembly of microbial communities. However, how these chems. relate to the assembly processes and co-occurrence patterns of diazotrophic assemblages in root-associated soils remains largely unknown. Here, we examined the diversity and assembly of diazotrophic communities and further deciphered their links with metabolites on Tibetan Plateau. We found that the distribution of sugars and organic acids in the root-associated soils was significantly correlated with the richness of diazotrophs. The presence of these two soil metabolites explains the variability in diazotrophic community compositions The differential concentrations of these metabolites were significantly linked with the distinctive abundances of diazotrophic taxa in same land types dominated by different plants or dissimilar soils by same plants. The assembly of diazotrophic communities is subject to deterministic ecol. processes, which are widely modulated by the variety and amount of sugars and organic acids. Organic acids, for instance, 3-(4-hydroxyphenyl)propionic acid and citric acid, were effective predictors of the characteristics of diazotrophic assemblages across desert habitats. Diazotrophic co-occurrence networks tended to be more complex and connected within different land types covered by the same plant species. The concentrations of multiple sugars and organic acids were coupled significantly with the distribution of keystone species, such as Azotobacter, Azospirillum, Bradyrhizobium, and Mesorhizobium, in the co-occurrence network. These findings provide new insights into the assembly mechanisms of root-associated diazotrophic communities across the desert ecosystems of the Tibetan Plateau.

Applied Microbiology and Biotechnology published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, Related Products of alcohols-buliding-blocks.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Bajkacz, Sylwia’s team published research in Molecules in 26 | CAS: 621-37-4

Molecules published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, Quality Control of 621-37-4.

Bajkacz, Sylwia published the artcileSeparation and Determination of Chemopreventive Phytochemicals of Flavonoids from Brassicaceae Plants, Quality Control of 621-37-4, the publication is Molecules (2021), 26(16), 4734, database is CAplus and MEDLINE.

The main aim of this study was to develop a method for the isolation and determination of polyphenols-in particular, flavonoids present in various morphol. parts of plants belonging to the cabbage family (Brassicaceae). Therefore, a procedure consisting of maceration, acid hydrolysis and measurement of the total antioxidant capacity of plant extracts (using DPPH assay) was conducted. Qual. anal. was performed employing thin-layer chromatog. (TLC), which was presented to be a suitable methodol. for the separation and determination of chemopreventive phytochems. from plants belonging to the cabbage family. The study involved the anal. of 25 vegetal samples, including radish, broccoli, Brussels sprouts, kale, canola, kohlrabi, cabbage, Chinese cabbage, red cabbage, pak choi and cauliflower. In addition, selected flavonoids content in free form and bonded to glycosides was determined by using an RP-UHPLC-ESI-MS/MS method.

Molecules published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, Quality Control of 621-37-4.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Liang, Xinjie’s team published research in Tetrahedron Letters in 61 | CAS: 621-37-4

Tetrahedron Letters published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, Quality Control of 621-37-4.

Liang, Xinjie published the artcileCopper and L-(-)-quebrachitol catalyzed hydroxylation and amination of aryl halides under air, Quality Control of 621-37-4, the publication is Tetrahedron Letters (2020), 61(33), 152222, database is CAplus.

L-(-)-Quebrachitol, a natural product obtained from waste water of the rubber industry, was utilized as an efficient ligand for the copper-catalyzed hydroxylation and amination of aryl halides to selectively give phenols and aryl amines in water or 95% ethanol. In addition, the hydroxylation of 2-chloro-4-hydroxybenzoic acid was validated on a 100-g scale under air.

Tetrahedron Letters published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, Quality Control of 621-37-4.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Wang, Yixuan’s team published research in Food Chemistry in 374 | CAS: 621-37-4

Food Chemistry published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C27H39ClN2, Quality Control of 621-37-4.

Wang, Yixuan published the artcileWidely targeted metabolomics analysis of enriched secondary metabolites and determination of their corresponding antioxidant activities in Elaeagnus angustifolia var. orientalis (L.)Kuntze fruit juice enhanced by Bifidobacterium animalis subsp. Lactis HN-3 fermentation, Quality Control of 621-37-4, the publication is Food Chemistry (2022), 131568, database is CAplus and MEDLINE.

Elaeagnus angustifolia var. orientalis (L.)Kuntze fruit contains a large number of naturally occurring mols. present as glycoside, methylated, and Me ester conjugates, which should be hydolyzed or transformed to become bioactive forms. For this purpose, Bifidobacterium animalis subsp. lactis HN-3 was selected to ferment Elaeagnus angustifolia var. orientalis (L.)Kuntze fruit juice (EOJ). After fermentation, the total phenolic content (TPC) and antioxidant capacity of the EOJ increased significantly compared to the non-fermented EOJ. Using widely-targeted metabolomics anal., polyphenolic compounds involved in the flavonoid biosynthetic pathway were determined to be up-regulated in the fermented EOJ. In addition, the metabolites generated by 8 deglycosidation, 5 demethylation, 5 hydrogenation, and 28 other reactions were detected in higher concentrations in the fermented EOJ compared to the non-fermented EOJ. Interestingly, these up-regulated metabolites have higher antioxidant and other biol. activities than their metabolic precursors, which provide a theor. basis for the development of Bifidobacterium-fermented plant products with stronger functional activities.

Food Chemistry published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C27H39ClN2, Quality Control of 621-37-4.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Luo, Ming’s team published research in Industrial Crops and Products in 177 | CAS: 621-37-4

Industrial Crops and Products published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, HPLC of Formula: 621-37-4.

Luo, Ming published the artcileIntegrative analysis of multiple metabolomes and transcriptome revealed color expression mechanism in red skin root syndrome of Panax ginseng, HPLC of Formula: 621-37-4, the publication is Industrial Crops and Products (2022), 114491, database is CAplus.

Red skin root syndrome causes reduction of both production and quality of Panax ginseng (ginseng). However, its development process and key metabolites are still unknown. Multiple metabolomes including non-targeted metabolome, and anthocyanins-targeted and carotenoids-targeted metabolomes were performed on field grown red skin and healthy ginseng. The detected metabolites were analyzed in combination with previous transcriptome results. The total metabolite profiles revealed that primary metabolites especially citrate was decreased, but secondary metabolites mainly involved in phenylpropanoid pathway were increased in red skin ginseng compared to those in healthy ginseng. Targeted metabolome found that each gram of fresh red skin ginseng sample contained 8 μg β-carotene, 0.56 μg α-carotene, 0.017 μg rutin, 0.248 μg chalcone, and some anthocyanins including 0.023 μg cyanidin and 0.037 μg quercetin 3-O-glucoside, albeit in low concentrations but higher than those in healthy ginseng. Furthermore, integrative metabolome and transcriptome anal. revealed that changes of metabolites related to anthocyanins synthesis were correlated with the related gene expression patterns. Addnl., jasmonate (JA) and its precursor 12-oxophytodienoic acid increased their concentrations dramatically in red skin ginseng, suggesting the possible role of JA or JA signaling pathway in regulating red skin syndrome. Consistently, the expressions of 17 MYB transcription factors were differentially regulated in red skin ginseng. JA related cis-elements are widely distributed at their promoters. Taken together, our study revealed reduction of primary metabolism but increase of secondary metabolism in red skin ginseng. MYB transcription factors of JA signal pathway were supposed to mediate accumulation of anthocyanins and carotenoids that contributed to the development of red skin ginseng.

Industrial Crops and Products published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, HPLC of Formula: 621-37-4.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Luo, Ming’s team published research in Industrial Crops and Products in 177 | CAS: 621-37-4

Industrial Crops and Products published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, HPLC of Formula: 621-37-4.

Luo, Ming published the artcileIntegrative analysis of multiple metabolomes and transcriptome revealed color expression mechanism in red skin root syndrome of Panax ginseng, HPLC of Formula: 621-37-4, the publication is Industrial Crops and Products (2022), 114491, database is CAplus.

Red skin root syndrome causes reduction of both production and quality of Panax ginseng (ginseng). However, its development process and key metabolites are still unknown. Multiple metabolomes including non-targeted metabolome, and anthocyanins-targeted and carotenoids-targeted metabolomes were performed on field grown red skin and healthy ginseng. The detected metabolites were analyzed in combination with previous transcriptome results. The total metabolite profiles revealed that primary metabolites especially citrate was decreased, but secondary metabolites mainly involved in phenylpropanoid pathway were increased in red skin ginseng compared to those in healthy ginseng. Targeted metabolome found that each gram of fresh red skin ginseng sample contained 8 μg β-carotene, 0.56 μg α-carotene, 0.017 μg rutin, 0.248 μg chalcone, and some anthocyanins including 0.023 μg cyanidin and 0.037 μg quercetin 3-O-glucoside, albeit in low concentrations but higher than those in healthy ginseng. Furthermore, integrative metabolome and transcriptome anal. revealed that changes of metabolites related to anthocyanins synthesis were correlated with the related gene expression patterns. Addnl., jasmonate (JA) and its precursor 12-oxophytodienoic acid increased their concentrations dramatically in red skin ginseng, suggesting the possible role of JA or JA signaling pathway in regulating red skin syndrome. Consistently, the expressions of 17 MYB transcription factors were differentially regulated in red skin ginseng. JA related cis-elements are widely distributed at their promoters. Taken together, our study revealed reduction of primary metabolism but increase of secondary metabolism in red skin ginseng. MYB transcription factors of JA signal pathway were supposed to mediate accumulation of anthocyanins and carotenoids that contributed to the development of red skin ginseng.

Industrial Crops and Products published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, HPLC of Formula: 621-37-4.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Iglesias-Carres, Lisard’s team published research in Journal of Agricultural and Food Chemistry in 70 | CAS: 621-37-4

Journal of Agricultural and Food Chemistry published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, HPLC of Formula: 621-37-4.

Iglesias-Carres, Lisard published the artcilePotential of Phenolic Compounds and Their Gut Microbiota-Derived Metabolites to Reduce TMA Formation: Application of an In Vitro Fermentation High-Throughput Screening Model, HPLC of Formula: 621-37-4, the publication is Journal of Agricultural and Food Chemistry (2022), 70(10), 3207-3218, database is CAplus and MEDLINE.

Trimethylamine N-oxide (TMAO) is a pro-atherosclerotic product of dietary choline metabolism generated by a microbiome-host axis. The first step in this pathway is the enzymic metabolism of choline to trimethylamine (TMA) by the gut microbiota. This reaction could be targeted to reduce atherosclerosis risk. We aimed to evaluate potential inhibitory effects of select dietary phenolics and their relevant gut microbial metabolites on TMA production via a human ex vivo-in vitro fermentation model. Various phenolics inhibited choline use and TMA production The most bioactive compounds tested (caffeic acid, catechin, and epicatechin) reduced TMA-d9 formation (compared to control) by 57.5 ± 1.3 to 72.5 ± 0.4% at 8 h and preserved remaining choline-d9 concentrations by 194.1 ± 6.4 to 256.1 ± 6.3% at 8 h. These inhibitory effects were achieved without altering cell respiration or cell growth. However, inhibitory effects decreased at late fermentation times, which suggested that these compounds delay choline metabolism rather than completely inhibiting TMA formation. Overall, caffeic acid, catechin, and epicatechin were the most effective noncytotoxic inhibitors of choline use and TMA production Thus, these compounds are proposed as lead bioactives to test in vivo.

Journal of Agricultural and Food Chemistry published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, HPLC of Formula: 621-37-4.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Ulaszewska, Maria M.’s team published research in European Journal of Nutrition in 59 | CAS: 621-37-4

European Journal of Nutrition published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8BFO2, Synthetic Route of 621-37-4.

Ulaszewska, Maria M. published the artcileTwo apples a day modulate human:microbiome co-metabolic processing of polyphenols, tyrosine and tryptophan., Synthetic Route of 621-37-4, the publication is European Journal of Nutrition (2020), 59(8), 3691-3714, database is CAplus and MEDLINE.

Methods: Using an untargeted metabolomics approach, we aimed to identify biomarkers of long-term apple intake and explore how apples impact on the human plasma and urine metabolite profiles. Forty mildly hypercholesterolemic volunteers consumed two whole apples or a sugar and energy-matched control beverage, daily for 8 wk in a randomized, controlled, crossover intervention study. The metabolome in plasma and urine samples was analyzed via untargeted metabolomics. Results: We found 61 urine and 9 plasma metabolites being statistically significant after the whole apple intake compared to the control beverage, including several polyphenol metabolites that could be used as BFIs. Furthermore, we identified several endogenous indole and phenylacetyl-glutamine microbial metabolites significantly increasing in urine after apple consumption. The multiomic dataset allowed exploration of the correlations between metabolites modulated significantly by the dietary intervention and fecal microbiota species at genus level, showing interesting interactions between Granulicatella genus and phenyl-acetic acid metabolites. Phloretin glucuronide and phloretin glucuronide sulfate appeared promising biomarkers of apple intake; however, robustness, reliability and stability data are needed for full BFI validation. Conclusion: The identified apple BFIs can be used in future studies to assess compliance and to explore their health effects after apple intake.

European Journal of Nutrition published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8BFO2, Synthetic Route of 621-37-4.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Kim, Hanseol’s team published research in BMC Microbiology in 20 | CAS: 621-37-4

BMC Microbiology published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, Safety of 3-Hydroxyphenylacetic acid.

Kim, Hanseol published the artcileA single amino acid substitution in aromatic hydroxylase (HpaB) of Escherichia coli alters substrate specificity of the structural isomers of hydroxyphenylacetate, Safety of 3-Hydroxyphenylacetic acid, the publication is BMC Microbiology (2020), 20(1), 109, database is CAplus and MEDLINE.

A broad range of aromatic compounds can be degraded by enteric bacteria, and hydroxyphenylacetic acid (HPA) degrading bacteria are the most widespread. Majority of Escherichia coli strains can use both the structural isomers of HPA, 3HPA and 4HPA, as the sole carbon source, which are catabolized by the same pathway whose associated enzymes are encoded by hpa gene cluster. Previously, we observed that E. coli B REL606 grew only on 4HPA, while E. coli B BL21(DE3) grew on 3HPA as well as 4HPA. In this study, we report that a single amino acid in 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of E. coli determines the substrate specificity of HPA isomers. Alignment of protein sequences encoded in hpa gene clusters of BL21(DE3) and REL606 showed that there was a difference of only one amino acid (position 379 in HpaB) between the two, viz., Arg in BL21(DE3) and Cys in REL606. REL606 cells expressing HpaB having Arg379 could grow on 3HPA, whereas those expressing HpaB with Gly379 or Ser379 could not. Structural anal. suggested that the amino acid residue at position 379 of HpaB is located not in the active site, but in the vicinity of the 4HPA binding site, and that it plays an important role in mediating the entrance and stable binding of substrates to the active site. The arginine residue at position 379 of HpaB is critical for 3HPA recognition. Information regarding the effect of amino acid residues on the substrate specificity of structural isomers can facilitate in designing hydoxylases with high catalytic efficiency and versatility.

BMC Microbiology published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, Safety of 3-Hydroxyphenylacetic acid.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts

Sakurai, Shuhei’s team published research in Structural Chemistry in 33 | CAS: 621-37-4

Structural Chemistry published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, Name: 3-Hydroxyphenylacetic acid.

Sakurai, Shuhei published the artcileStructure-antioxidant activity (oxygen radical absorbance capacity) relationships of phenolic compounds, Name: 3-Hydroxyphenylacetic acid, the publication is Structural Chemistry (2022), 33(4), 1055-1062, database is CAplus.

Antioxidant capacity is the extent to which a compound can eliminate reactive oxygen species, and in vitro methods for its chem. evaluation have been proposed. Among these methods, the oxygen radical absorbance capacity (ORAC) assay comes close to the oxidation reaction in the living body because it generates radical species that mimic the lipid peroxyl radical involved in the peroxidation reaction of biol. components and react in a phosphate buffer. In this study, PM7, a semi-empirical MO method, was used to calculate the thermodn. properties (bond dissociation enthalpy, ionisation potential and proton affinity) associated with ORAC. We also applied the clusterwise linear regression anal. as a statistical method for grouping the antioxidants by structure. By analyzing the data for antioxidants, the trend in the hydrophilic ORAC values was determined using the calculated structures and bond dissociation enthalpies of the groups classified according to the presence or absence of oxygen functional groups in the ortho position of phenol. Further studies of indicators other than bond dissociation enthalpy are needed to predict the ORAC of other antioxidants such as flavonoids and indoles.

Structural Chemistry published new progress about 621-37-4. 621-37-4 belongs to alcohols-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Phenol,Natural product, name is 3-Hydroxyphenylacetic acid, and the molecular formula is C8H8O3, Name: 3-Hydroxyphenylacetic acid.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts