Vaghela, Chetana et al. published their research in Journal of Environmental Chemical Engineering in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Product Details of 620-92-8

Selective electrochemical sensing of bisphenol derivatives using novel bioelectrode of agarose-guar gum-graphene oxide immobilized with tyrosinase was written by Vaghela, Chetana;Kulkarni, Mohan;Karve, Meena;Zinjarde, Smita. And the article was included in Journal of Environmental Chemical Engineering in 2022.Product Details of 620-92-8 The following contents are mentioned in the article:

Bisphenols (BPs) are widely used in manufacturing of recyclable plastic products that are potentially toxic to human beings. In the current investigation, an electrochem. sensor based on a novel bioelectrode of agarose-guar gum-graphene oxide (A-G-GO) immobilized with tyrosinase was developed for bisphenols detection. The sensor was responsive toward six BP derivatives (A, F, E, B, Z and AP) while being non-responsive toward bisphenols S and AF. Formation of A-G-GO composites was confirmed by various anal. techniques. The electrochem. characterization indicated enhanced charge transfer abilities of the composites that helped in improving sensitivity. Mechanism of sensing involved enzymic oxidation of bisphenols to corresponding o-bisphenols and subsequently their reduction on designed bioelectrodes at a potential of 80 mV. The sensor exhibited differential sensitivity toward varied BPs with linear dynamic response in the concentration range of 50-1000 μM and limit of detection ranging from 5 to 50 μM. Based on apparent Km values exhibited by tyrosinase, differential sensitivity toward BPs could be explained. The biosensor was found to be highly selective for bisphenol detection over other tyrosinase substrates with enhanced storage stability of 150 d. The proposed bioelectrode could successfully be used for measurement of bisphenols from plastic food packing material thus demonstrating its practical utility. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Product Details of 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Product Details of 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Xueyou et al. published their research in Science of the Total Environment in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Related Products of 620-92-8

Long-term exposure to bisphenol A and its analogues alters the behavior of marine medaka (Oryzias melastigma) and causes hepatic injury was written by Li, Xueyou;Liu, Yue;Chen, Yuebi;Song, Xinlin;Chen, Xiaotian;Zhang, Ning;Li, Huichen;Guo, Yusong;Wang, Zhongduo;Dong, Zhongdian. And the article was included in Science of the Total Environment in 2022.Related Products of 620-92-8 The following contents are mentioned in the article:

Bisphenols (BPA, BPF, and BPAF) are widely present in the aquatic environment and have various adverse effects on aquatic organisms. However, their hepatic toxicity in marine fish is not fully understood. Hence, we examined the growth parameters, histol. features, antioxidant defense mechanisms, and gene expression profiles in the livers of marine medaka after exposure to single and combined bisphenols for 70 days. The final body weight and final body length of males exposed to BPAF were significantly higher than those in the control group, and the survival rate was significantly lower. Bisphenol exposure led to vacuolization and local lesions in the liver, especially in the BPAF group, and altered antioxidant enzyme activity in the liver, leading to oxidative stress. In addition, after bisphenol exposure, marine medaka showed anxiolytic effects and a significant reduction in swimming distance compared with that in the control group. As determined by RNA-seq, bisphenol exposure altered multiple biol. pathways in the liver, such as fatty acid biosynthesis, fatty acid metabolism, and ribosome biogenesis pathways, with significant changes in gene expression levels. In particular, chgs and vtgs were significantly up-regulated after BPAF exposure, suggesting an estrogenic effect. Overall, bisphenols can adversely affect the growth and metabolism of marine medaka. BPF and BPAF may not be ideal substitutes for BPA. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Related Products of 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Related Products of 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jin, Kunyu et al. published their research in Chemistry – An Asian Journal in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.HPLC of Formula: 620-92-8

Synthesis and Characterization of Poly(5′-hexyloxy-1′,4-biphenyl)-b-poly(2′,4′-bispropoxysulfonate-1′,4-biphenyl) with High Ion Exchange Capacity for Proton Exchange Membrane Fuel Cell Applications was written by Jin, Kunyu;Yue, Baohua;Yan, Liuming;Qiao, Risa;Zhao, Hongbin;Zhang, Jiujun. And the article was included in Chemistry – An Asian Journal in 2022.HPLC of Formula: 620-92-8 The following contents are mentioned in the article:

Proton exchange membrane (PEM) is pivotal for proton exchange membrane fuel cells (PEMFCs). In the present work, a block copolymer with hydrophilic alkyl sulfonated side groups and hydrophobic flexible alkyl ether side groups, poly(5′-hexyloxy-1′,4-biphenyl)-b-poly(2′,4′-bispropoxysulfonate-1′,4-biphenyl) (HBP-b-xBPSBP), is designed and synthesized by copolymerization of the hydrophilic and hydrophobic oligomers. The oligomers are synthesized via a Pd-catalyzed Suzuki cross-coupling of 1,3-dibromo-5-hexyloxybenzene, and 3,3′-[(4,6-dibromo-1,3-phenylene)bis(oxy)]bis(propane-1-sulfonate) or 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene. The good solubility and film-forming characteristics are achieved via the introduction of flexible hexyloxy side groups, and high ion exchange capacity (IEC) is achieved via the introduction of high d. of alkyl sulfonated side groups. The HBP-b-0.5BPSBP has the highest IEC of 3.17 mmol/g, the highest proton conductivity of 43.5 mS/cm at 95°C and 90% relative humidity (RH) and low methanol permeability of 6.45×10-7 cm2/s. Meanwhile, crosslinked HBP-b-xBPSBP exhibits promising water uptake, swelling ratio and low methanol permeability. These characteristics are attributed to the crosslinked structure and the hydrophilic/hydrophobic nanophase separation morphol. promoted by the poly(m-phenylene) main chains, flexible alkyl ether groups, and alkyl sulfonated side groups. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8HPLC of Formula: 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.HPLC of Formula: 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Shimabuku, Ila et al. published their research in Science of the Total Environment in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.COA of Formula: C13H12O2

Occurrence and risk assessment of organophosphate esters and bisphenols in San Francisco Bay, California, USA was written by Shimabuku, Ila;Chen, Da;Wu, Yan;Miller, Ezra;Sun, Jennifer;Sutton, Rebecca. And the article was included in Science of the Total Environment in 2022.COA of Formula: C13H12O2 The following contents are mentioned in the article:

Organophosphate esters and bisphenols are two classes of industrial chems. that are ubiquitously detected in environmental matrixes due to high global production and widespread use, particularly in the manufacture of plastic products. In 2017, water samples collected throughout the highly urbanized San Francisco Bay were analyzed for 22 OPEs and 16 bisphenols using liquid chromatog.-electrospray ionization-Q Trap-mass spectrometry. Fifteen of the 22 OPEs were detected, with highest median concentrations in the order TCPP (42 ng/L) > TPhP (9.5 ng/L) > TBOEP (7.6 ng/L) > TnBP (7.5 ng/L) > TEP (6.7 ng/L) > TDCIPP (6.2 ng/L). Pairwise correlation anal. revealed several strong, pos. correlations among OPEs, and few weak, neg. correlations between OPEs and BPA, suggesting differences between the two classes with respect to their sources, pathways, and/or fate in the environment. Concentrations of OPEs and bisphenols observed in this study were generally consistent with reported concentrations in other estuarine and marine settings globally. TDCIPP exceeded existing predicted no-effect concentrations at some sites, and six other compounds (TCrP, IDDPP, EHDPP, TPhP, TBOEP, and BPA) were observed at levels approaching individual compound PNECs (not considering mixture effects), indicating potential risks to Bay biota. Periodic monitoring can be used to maintain vigilance in the face of potential regrettable substitutions. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8COA of Formula: C13H12O2).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.COA of Formula: C13H12O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Pinto, Jader Camilo et al. published their research in Microscopy Research and Technique in 2021 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Application In Synthesis of 4,4′-Methylenediphenol

Evaluation of curved root canals filled with a new bioceramic sealer: A microcomputed tomographic study using images with different voxel sizes and segmentation methods was written by Pinto, Jader Camilo;Torres, Fernanda Ferrari Esteves;Lucas-Oliveira, Everton;Bonagamba, Tito Jose;Guerreiro-Tanomaru, Juliane Maria;Tanomaru-Filho, Mario. And the article was included in Microscopy Research and Technique in 2021.Application In Synthesis of 4,4′-Methylenediphenol The following contents are mentioned in the article:

The aim of this study was to investigate the filling ability of a new premixed bioceramic sealer in comparison with an epoxy resin-based sealer in curved root canals using different segmentation methods and voxel sizes in micro-CT images. Twelve curved mesial roots of mandibular molars with two separated canals were selected. All root canals were prepared by using HyFlex EDM files size 25/.08 and filled by the single cone technique and Bio-C Sealer or AH Plus (n = 12). The samples were scanned by micro-CT at 5μm. The images were analyzed at 5, 10, and 20μm for the volumetric anal. of voids in filling. Visual image segmentation was performed by two examiners, and the automatic segmentation was accomplished for comparison. Radiopacity of the sealers was evaluated by radiog. anal. Data were submitted to the two-way ANOVA and non-paired t tests at a significance level of 5%. AH Plus had the highest radiopacity (p < .05). Root canals filled with AH Plus or Bio-C had similar low percentage of voids (p > .05). There was no difference interobserver, which had similar results to those obtained with automatic segmentation for all voxel sizes evaluated (p > .05). Bio-C Sealer had appropriate filling ability. Visual and automatic segmentation can be applied to micro-CT images with voxel sizes from 5 to 20μm to evaluate the filling of sealers with adequate radiopacity. Automatic segmentation should be used as a faster method. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Application In Synthesis of 4,4′-Methylenediphenol).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Application In Synthesis of 4,4′-Methylenediphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Fuyang et al. published their research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Product Details of 620-92-8

Peroxymonosulfate enhanced photocatalytic degradation of serial bisphenols by metal-free covalent organic frameworks under visible light irradiation: mechanisms, degradation pathway and DFT calculation was written by Liu, Fuyang;Dong, Qiqi;Nie, Chenyi;Li, Zhengmao;Zhang, Boaiqi;Han, Peng;Yang, Wulin;Tong, Meiping. And the article was included in Chemical Engineering Journal (Amsterdam, Netherlands) in 2022.Product Details of 620-92-8 The following contents are mentioned in the article:

Visible light driven peroxymonosulfate (PMS) activation by metal-free photocatalysts has attracted great attention. In present study, covalent organic frameworks (COF-PRD, PRD refers to pyridine) were synthesized and utilized to activate PMS to degrade bisphenol A (BPA) with visible light (VL) irradiation COF-PRD with PMS improved 3.5 times degradation kinetics for BPA degradation relative to that of COF-PRD without PMS with VL irradiation ·O2, h+ and 1O2 dominated the BPA degradation in COF-PRD with PMS with VL irradiation Under anaerobic condition, BPA could still be effectively degraded due to the reaction of PMS with e to generate ·SO4. In addition to BPA, bisphenol F (BPF), bisphenol B (BPB), bisphenol Z (BPZ) and bisphenol AP (BPAP) could also be effectively degraded by COF-PRD with PMS under VL irradiation conditions. D. functional theory (DFT) calculation together with intermediates determination showed that the main degradation pathway of bisphenols (BPs) included hydroxylation, electrophilic attack and ring-opening reaction. The bioaccumulation effects of BPs were greatly reduced during the degradation process. Moreover, COF-PRD exhibited excellent reusability in ten successive cycles. Clearly, COF-PRD could be employed as photocatalytic PMS activation to degrade bisphenols under both aerobic and anaerobic conditions. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Product Details of 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Product Details of 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Torres-Herrador, Francisco et al. published their research in Journal of Analytical and Applied Pyrolysis in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Synthetic Route of C13H12O2

Study of the degradation of epoxy resins used in spacecraft components by thermogravimetry and fast pyrolysis was written by Torres-Herrador, Francisco;Eschenbacher, Andreas;Blondeau, Julien;Magin, Thierry E.;Geem, Kevin M. Van. And the article was included in Journal of Analytical and Applied Pyrolysis in 2022.Synthetic Route of C13H12O2 The following contents are mentioned in the article:

Predicting the demisability upon re-entry of space debris objects is of great importance due to the threat these objects pose if they were to fall in an inhabited area. In particular, carbon/epoxy composite materials have been found on Earth in several occasions. Accurate models to assess the demisability of such components require, in particular, detailed thermal degradation data for the epoxy resin. In this work, we analyze a resin used to manufacture such components, using thermogravimetric anal. (TGA), organic elemental anal., and pyrolysis coupled to comprehensive two-dimensional gas chromatog. The epoxy resin rapidly decomposed in a relatively narrow range of temperatures (300-400 oC) in more than 70 different volatile products. A one-step kinetic model is proposed for the pyrolysis of epoxy based on thermogravimetry observations. The information on the species and elemental composition can be used to develop more accurate material degradation models for predicting the demisability upon re-entry of space debris. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Synthetic Route of C13H12O2).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Synthetic Route of C13H12O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zener, Bostjan et al. published their research in Journal of Environmental Chemical Engineering in 2021 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Quality Control of 4,4′-Methylenediphenol

Removal of 18 bisphenols co-present in aqueous media by effectively immobilized titania photocatalyst was written by Zener, Bostjan;Matoh, Lev;Rodic, Peter;Skufca, David;Heath, Ester;Lavrencic Stangar, Urska. And the article was included in Journal of Environmental Chemical Engineering in 2021.Quality Control of 4,4′-Methylenediphenol The following contents are mentioned in the article:

In recent years, the increasing demand for clean and potable water has created a need for efficient, cost-effective wastewater treatment. One of the most promising methods is heterogeneous photocatalysis due to its ability to mineralize organic mols. This paper describes the development of a flow-through packed bed reactor system based on a packed column comprising glass beads coated with com. available TiO2 (P25). The resulting deposited films and corresponding powders were characterized using thermal anal. (TGA-DSC-MS), X-ray diffraction (XRD), scanning/transmission electron microscopy (SEM/TEM), sp. surface area (BET) and XPS measurements. The photocatalytic efficiency of the reactor was tested by observing the degradation rate of Plasmocorinth B, an organic dye, and 18 bisphenols co-dissolved in deionized water and simulated wastewater under UV light. The developed photocatalytic reactor effectively removed organic dye and bisphenols from the aqueous medium using a combination of adsorption and photocatalysis. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Quality Control of 4,4′-Methylenediphenol).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Quality Control of 4,4′-Methylenediphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yu, Zhendong et al. published their research in Journal of Colloid and Interface Science in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Quality Control of 4,4′-Methylenediphenol

Insights into enhanced peroxydisulfate activation with S doped Fe@C catalyst for the rapid degradation of organic pollutants was written by Yu, Zhendong;Ma, Jiachen;Huang, Xiaoyi;Lv, Yuancai;Liu, Yifan;Lin, Chunxiang;Dou, Rongni;Ye, Xiaoxia;Shi, Yongqian;Liu, Minghua. And the article was included in Journal of Colloid and Interface Science in 2022.Quality Control of 4,4′-Methylenediphenol The following contents are mentioned in the article:

In this study, the S modified iron-based catalyst (S-Fe@C) for activating peroxydisulfate (PDS) was fabricated by heating the S-MIL-101 (Fe) precursor at 800°C. The resulted S-Fe@C composite mainly consisted of carbon, Fe0, FeS, FeS2, and Fe3O4, and showed strong magnetism. Compared with Fe@C obtained from MIL-101 (Fe), the S-Fe@C exhibited much higher performance (1.5 times larger) on PDS activation and the S-Fe@C/PDS could rapidly degrade various organic pollutants in 5 min under the attack of the species of SO4·, 1O2, electro-transfer and Fe(IV). The S element in enhancing the PDS activation mainly involved two mechanisms. Firstly, the doped S could speed up the electron transfer efficiency, resulting in a promotion on PDS decomposition; secondly, the S2- S22- or S0 could achieve the circulation of Fe2+ and Fe3+, leading to the formation of non-radicals Fe(IV) and 1O2. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Quality Control of 4,4′-Methylenediphenol).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Quality Control of 4,4′-Methylenediphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Moreno-Gomez-Toledano, Rafael et al. published their research in Environmental Pollution (Oxford, United Kingdom) in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.COA of Formula: C13H12O2

Relationship between emergent BPA-substitutes and renal and cardiovascular diseases in adult population was written by Moreno-Gomez-Toledano, Rafael. And the article was included in Environmental Pollution (Oxford, United Kingdom) in 2022.COA of Formula: C13H12O2 The following contents are mentioned in the article:

Plastic waste pollution is one of the leading environmental problems of modern society. Its use, disposal, and recycling lead to the release of xenobiotic compounds such as bisphenol A (BPA), a known endocrine disruptor related to numerous pathologies. Due to the new restrictions on its use, it is gradually being replaced by derived mols., such as bisphenol F or S (BPF or BPS), whose health risks have not yet been adequately studied. In the present work, significant relationships between the new BPA substitute mols. and renal and cardiovascular diseases have been detected by performing binomial and multinomial logistic regressions in one of the worlds largest cohorts of urinary phenols. The results have shown a significant relationship between urinary BPF and renal function or heart disease (specifically congestive heart failure). Urinary BPS has shown a pos. relationship with the risk of hypertension and a neg. relationship with kidney disease. Consequently, applying new substitute mols. could imply potential health risks equivalent to BPA. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8COA of Formula: C13H12O2).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.COA of Formula: C13H12O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts