Validated single urinary assay designed for exposomic multi-class biomarkers of common environmental exposures was written by Jagani, Ravikumar;Pulivarthi, Divya;Patel, Dhavalkumar;Wright, Rosalind J.;Wright, Robert O.;Arora, Manish;Wolff, Mary S.;Andra, Syam S.. And the article was included in Analytical and Bioanalytical Chemistry in 2022.Reference of 620-92-8 The following contents are mentioned in the article:
Epidemiol. studies often call for anal. methods that use a small biospecimen volume to quantify trace level exposures to environmental chem. mixtures Currently, as many as 150 polar metabolites of environmental chems. have been found in urine. Therefore, we developed a multi-class method for quantitation of biomarkers in urine. A single sample preparation followed by three LC injections was optimized in a proof-of-approach for a multi-class method. The assay was validated to quantify 50 biomarkers of exposure in urine, belonging to 7 chem. classes and 16 sub-classes. The classes represent metabolites of 12 personal care and consumer product chems. (PCPs), 5 polycyclic aromatic hydrocarbons (PAHs), 5 organophosphate flame retardants (OPFRs), 18 pesticides, 5 volatile organic compounds (VOCs), 4 tobacco alkaloids, and 1 drug of abuse. Human urine (0.2 mL) was spiked with isotope-labeled internal standards, enzymically deconjugated, extracted by solid-phase extraction, and analyzed using high-performance liquid chromatog.-tandem mass spectrometry. The methanol eluate from the cleanup was split in half and the first half analyzed for PCPs, PAH, and OPFR on a Betasil C18 column; and pesticides and VOC on a Hypersil Gold AQ column. The second half was analyzed for tobacco smoke metabolites and a drug of abuse on a Synergi Polar RP column. Limits of detection ranged from 0.01 to 1.0 ng/mL of urine, with the majority ≤0.5 ng/mL (42/50). Anal. precision, estimated as relative standard deviation of intra- and inter-batch uncertainty, variabilities, was <20%. Extraction recoveries ranged from 83 to 109%. Results from the optimized multi-class method were qualified in formal international proficiency testing programs. Further method customization options were explored and method expansion was demonstrated by inclusion of up to 101 analytes of endo- and exogenous chems. This exposome-scale assay is being used for population studies with savings of assay costs and biospecimens, providing both quant. results and the discovery of unexpected exposures. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Reference of 620-92-8).
4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Reference of 620-92-8
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts