Xing, Yunqi et al. published their research in Polymers (Basel, Switzerland) in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Name: 4,4′-Methylenediphenol

Study on Surface Discharge Characteristics of GO-Doped Epoxy Resin-LN2 Composite Insulation was written by Xing, Yunqi;Chen, Yuanyuan;Yuan, Ruiyi;Yang, Zhuoran;Yao, Tianyi;Li, Jiehua;Zhu, Wenbo;Wang, Xiaoxue. And the article was included in Polymers (Basel, Switzerland) in 2022.Name: 4,4′-Methylenediphenol The following contents are mentioned in the article:

Superconducting power lead equipment for epoxy insulation, such as high-temperature superconducting DC power or liquefied natural gas energy pipelines, as well as high-temperature superconducting cables, has long been used in extreme environments, from liquid nitrogen temperatures to normal temperatures It is easy to induce surface discharge and flashover under the action of strong elec. field, which accelerates the insulation failure of current leads. In this paper, two-dimensional nano-material GO was used to control the elec. properties of epoxy resins. The DC surface discharge and flashover characteristics of the prepared epoxy resin-GO composite insulation materials were tested at room temperature with liquid nitrogen. The surface discharge mechanism of the epoxy resin-GO composite insulation materials was analyzed. The exptl. results show that the insulation properties of epoxy composites doped with GO changed. Among them, the surface flashover voltage of 0.05 wt% material is the best, which can inhibit the discharge phenomenon and improve its insulation properties in extreme environments, from room temperature to liquid nitrogen temperature It is found that the development process of surface discharge of composite insulating materials under liquid nitrogen is quite different from that under room temperature Before critical flashover, the repetition rate and amplitude of surface discharge remain at a low level until critical flashover. Furthermore, the voltage of the first flashover is significantly higher than that of the subsequent flashover under the action of the desorption gas on the surface of the composite insulating material and the gasification layer produced by the discharge. Given that the surface flashover voltage of 0.05 wt% epoxy composite is the best, the research and anal. of 0.05 wt% composite is emphasized. In the future design of superconducting power lead insulation, the modification method of adding GO to epoxy resin can be considered in order to improve its insulation performance. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Name: 4,4′-Methylenediphenol).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Name: 4,4′-Methylenediphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Robin, Julien et al. published their research in Ecotoxicology and Environmental Safety in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Application of 620-92-8

Analytical method for the biomonitoring of bisphenols and parabens by liquid chromatography coupled to tandem mass spectrometry in human hair was written by Robin, Julien;Binson, Guillaume;Albouy, Marion;Sauvaget, Alexis;Pierre-Eugene, Pascale;Migeot, Virginie;Dupuis, Antoine;Venisse, Nicolas. And the article was included in Ecotoxicology and Environmental Safety in 2022.Application of 620-92-8 The following contents are mentioned in the article:

Bisphenols and parabens are endocrine disruptors families widely used in daily life. They are known to be linked to numerous pathologies such as reproductive disorders, obesity, breast cancer, hypertension and asthma. Biomonitoring is an essential tool for assessing population exposure to environmental pollutants. Blood and urine are the main matrixes used in human biomonitoring. However, they are not suitable to evaluate long-term exposure to endocrine disruptors with a short elimination half-life such as parabens or phenols. Hair appears to be an interesting alternative matrix allowing a wide window of exposure due to an accumulation of xenobiotics during hair growth. This study presents the development and validation of a high-performance liquid chromatog. coupled to tandem mass spectrometry for the simultaneous determination of bisphenol A, its chlorinated derivatives, bisphenol F, bisphenol S and parabens in human hair. An optimized sample preparation based on acidic hydrolysis followed by liquid-liquid extraction was performed, before an anal. by ultra-high performance liquid chromatog. coupled to tandem mass spectrometry in multiple reaction monitoring mode. To validate the method, recognized bioanal. guidelines were used and calibration and quality control samples were prepared in human hair samples. Linearities were over 0.996 in the whole range of concentrations Trueness and precision were demonstrated for each target analyte with intra-day and inter-day bias values ranging from 86% to 118% and relative standard deviation values ranging from 0% to 19%. At the same time, limits of quantification were set at 0.25 ng/g for bisphenol A and parabens, 0.05 ng/g for bisphenols F and S and 0.00625 ng/g for the chlorinated derivatives of bisphenol A. This reliable method was applied to hair samples taken from hospital professionals and allowed the quantification of these endocrine disruptors in this population. Chlorinated derivatives of bisphenol A were quantified here in hair for the first time. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Application of 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Application of 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Owczarek, Katarzyna et al. published their research in Microchemical Journal in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Synthetic Route of C13H12O2

Validated GC-MS method for determination of bisphenol a and its five analogues in dietary and nutritional supplements was written by Owczarek, Katarzyna;Waraksa, Emilia;Klodzinska, Ewa;Zrobok, Yaroslav;Ozimek, Mariusz;Rachon, Dominik;Kudlak, Blazej;Wasik, Andrzej;Mazerska, Zofia. And the article was included in Microchemical Journal in 2022.Synthetic Route of C13H12O2 The following contents are mentioned in the article:

Bisphenol A (BPA) and its analogs showing structural and functional similarity to BPA are commonly applied in various industrial applications and thus are becoming ubiquitous in the environment. At the same time there is increasing scientific evidence that exposure to these chems. may lead to adverse health effects in human and wildlife. In recent years dietary and nutritional supplements dedicated for athletes have become more popular and are widely used even by people who are not professionals. This study presents the development, optimization and validation of an anal. procedure for determination of six bisphenol analogs in dietary supplements using gas chromatog. – mass spectrometry technique. All validation parameters met the established acceptance criteria in accordance with international guidelines. The method was linear within the tested range of 50-1000 ng/mL, the limit of quantitation was set as the lowest calibration point 50 ng/mL, detection limit for each bisphenol was calculated as standard estimation error on the basis of the linearity testing and was in the range of 8.73-15.44 ng/mL. Method trueness, accuracy (within and between runs) and precision were also verified and were in the range of 78.8 – 100.4%, 94.3 – 103.1%,0.5 – 9.6% resp. The developed procedure was successfully applied for real samples anal., namely for fifteen sport supplements of different composition and designated for various purposes, i.e. for increasing effectiveness, promoting muscle recovery and endurance, reducing tiredness and fatigue or increasing immune ability. For the majority of samples, bisphenols were either not detected or detected at the LOD level except bisphenol A which was quantitated in few samples at LOQ level or higher (in the range 0.852-2.892 ng/mg). The field of bisphenol analogs analytics has increased in recent years due to law regulations becoming more strict, thus the development of new anal. tools for quality control of dietary products is needed and fully justified. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Synthetic Route of C13H12O2).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Synthetic Route of C13H12O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Yue et al. published their research in Separation and Purification Technology in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Related Products of 620-92-8

Enhanced adsorption selectivity of bisphenol analogues by tuning the functional groups of covalent organic frameworks was written by Zhao, Yue;Feng, Chenghong;Tian, Chenhao;Li, Zhenling;Yang, Yu. And the article was included in Separation and Purification Technology in 2022.Related Products of 620-92-8 The following contents are mentioned in the article:

Bisphenol analogs (BPs) are widely used as plasticizers and can be released during the aging and degradation of microplastics. Their persistence in water can cause serious harm to the ecosystem and human health. To improve the capture ability of COFs toward these estrogen-like toxins from water, amino group-functionalized COFs (COFs-TpBD(NH2)2) were constructed from nitro group COFs (COFs-TpBD(NO2)2) via the reduction of nitro to amino groups, and the adsorption behaviors for the five BPs (BPA, BPF, BPC, BPS and 4-CP) were compared. The focus was laid on the role of functional-group-tuning in the changes of adsorption capacity, selectivity and mechanisms of the COFs absorbents. The results showed that TpBD(NH2)2 has a higher adsorption capacity and better adsorption selectivity for most BPs than TpBD(NO2)2. COFs with nitro and amino groups show the best adsorption selectivity for BPC (KF = 6.71 min-1) and BPF (KF = 9.49 min-1), resp. Chemisorption dominates the adsorption of the two COFs, and internal particle diffusion is the rate-determining step. The adsorption behavior difference between the two COFs was ascribed to the successful conversion of functional groups of the COFs from nitro to amino groups, which was proven by FT-IR, SEM, PXRD, and BET characterization results. Adsorption of BPA, BPC and BPF by TpBD(NO2)2 is pos. related to hydrophobic interactions (represented by log Kow), but the adsorption mechanism of TpBD(NH2)2 was mainly attributed to the electrostatic interaction, as evidenced by the zeta potential and pKa. Hydrogen bonds were proven to be a critical factor that affects the adsorption of BPS and 4-CP by COFs. This study on the appropriate selection of COFs functional groups can provide insight into the future design of adsorbents and the prevention of BPs pollution release from microplastics. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Related Products of 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Related Products of 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Niu, Lijun et al. published their research in Separation and Purification Technology in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: 4,4′-Methylenediphenol

Synergistic oxidation of organic micropollutants by Mn(VII)/periodate system: Performance and mechanism was written by Niu, Lijun;An, Lili;Zhang, Kaiting;Chen, Qian;Yu, Xin;Zhang, Menglu;Feng, Mingbao. And the article was included in Separation and Purification Technology in 2022.Recommanded Product: 4,4′-Methylenediphenol The following contents are mentioned in the article:

The increased release of various emerging organic contaminants into natural waters has posed great threats to ecol. safety and public health. The ensuing global water contamination has necessitated the development of highly efficient treatment strategies for water purification Herein, we presented for the first time that the combined utilization of permanganate (Mn(VII)) and periodate (PI) could synergistically and rapidly accomplish complete destruction of different organic micropollutants (e.g., bisphenol F, methotrexate, and tetracycline) within 2-5 min. Comparatively, the single treatment only eliminated very small amounts of micropollutants. Mechanistic investigations were performed using the trapper-based ESR, scavenging and probe experiments, UV-vis spectra anal., determination of iodine species, and multiple validation tests. These data collectively suggested that the highly reactive Mn(V)/Mn(VI) intermediates played the leading role in accelerating contaminant abatement within the Mn(VII)/PI oxidation system. Reactive oxygen/or iodine species (1O2, ·OH, O2·, IO3·, and IO4·) and low valence Mn species (Mn(II), Mn(III), and in-situ formed MnO2 colloids) did not participate in decontamination in this process. Subsequently, the oxidized products of three micropollutants were determined, and the transformation pathways were clarified. Ring-opening, C-C bond cleavage, demethylation, carbonylation, and hydroxylation reactions mainly occurred in the degradation process. Notably, the combined system did not yield any toxic iodinated end products. Finally, the environmental risks of the degradation products were also evaluated based on in silico QSAR-based prediction tools. Overall, this study provides a novel, highly efficient, and green treatment technol., i.e., Mn(VII)/PI system, which could be employed for rapid and sustainable water decontamination. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Recommanded Product: 4,4′-Methylenediphenol).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: 4,4′-Methylenediphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Al-Abdulla, Ruba et al. published their research in International Journal of Molecular Sciences in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of 4,4′-Methylenediphenol

Screening of Relevant Metabolism-Disrupting Chemicals on Pancreatic β-Cells: Evaluation of Murine and Human In Vitro Models was written by Al-Abdulla, Ruba;Ferrero, Hilda;Soriano, Sergi;Boronat-Belda, Talia;Alonso-Magdalena, Paloma. And the article was included in International Journal of Molecular Sciences in 2022.Quality Control of 4,4′-Methylenediphenol The following contents are mentioned in the article:

Endocrine-disrupting chems. (EDCs) are chem. substances that can interfere with the normal function of the endocrine system. EDCs are ubiquitous and can be found in a variety of consumer products such as food packaging materials, personal care and household products, plastic additives, and flame retardants. Over the last decade, the impact of EDCs on human health has been widely acknowledged as they have been associated with different endocrine diseases. Among them, a subset called metabolism-disrupting chems. (MDCs) is able to promote metabolic changes that can lead to the development of metabolic disorders such as diabetes, obesity, hepatic steatosis, and metabolic syndrome, among others. Despite this, today, there are still no definitive and standardized in vitro tools to support the metabolic risk assessment of existing and emerging MDCs for regulatory purposes. Here, we evaluated the following two different pancreatic cell-based in vitro systems: the murine pancreatic β-cell line MIN6 as well as the human pancreatic β-cell line EndoC-βH1. Both were challenged with the following range of relevant concentrations of seven well-known EDCs: (bisphenol-A (BPA), bisphenol-S (BPS), bisphenol-F (BPF), perfluorooctanesulfonic acid (PFOS), di(2-ethylhexyl) phthalate (DEHP), cadmium chloride (CdCl2), and dichlorodiphenyldichloroethylene (DDE)). The screening revealed that most of the tested chems. have detectable, deleterious effects on glucose-stimulated insulin release, insulin content, elec. activity, gene expression, and/or viability. Our data provide new mol. information on the direct effects of the selected chems. on key aspects of pancreatic β-cell function, such as the stimulus-secretion coupling and ion channel activity. In addition, we found that, in general, the sensitivity and responses were comparable to those from other in vivo studies reported in the literature. Overall, our results suggest that both systems can serve as effective tools for the rapid screening of potential MDC effects on pancreatic β-cell physiol. as well as for deciphering and better understanding the mol. mechanisms that underlie their action. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Quality Control of 4,4′-Methylenediphenol).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of 4,4′-Methylenediphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhu, Min et al. published their research in Science of the Total Environment in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Formula: C13H12O2

Bisphenol chemicals disturb intestinal homeostasis via Notch/Wnt signaling and induce mucosal barrier dysregulation and inflammation was written by Zhu, Min;Wei, Rongguo;Li, Yuanyuan;Li, Jinbo;Dong, Mengqi;Chen, Xuanyue;Lv, Lin;Qin, Zhanfen. And the article was included in Science of the Total Environment in 2022.Formula: C13H12O2 The following contents are mentioned in the article:

Emerging evidence has shown that bisphenol A (BPA) can exert adverse effects on intestinal barrier in rodents, but little is known about its underlying mechanisms. We previously found BPA and its substitute bisphenol F (BPF) disrupted Notch signaling and altered intestinal histol. structures in Xenopus laevis tadpoles. The present study aimed to determine whether BPA and BPF could affect intestinal homeostasis via Notch/Wnt signaling and induce intestinal barrier dysregulation in adult mammals, given the fundamental roles of the two conserved signaling pathways in intestinal homeostasis and regulation of intestinal barrier. We found that following 7-day administration with BPA or BPF through drinking water at the reference dose of 50μg/kg/d and no observed adverse effect level of 5 mg/kg/d (NOAEL) of BPA, adult male mice displayed no alterations at histol. and cellular levels in colons, but high dose of both BPA and BPF downregulated the expression of Notch- and Wnt-related genes as well as key genes responsible for intestinal homeostasis. When administration was extended to 14 days, all treatments significantly suppressed the expression of all tested Notch- and Wnt-related genes; correspondingly, administrated colons exhibited downregulated expression of key genes responsible for intestinal homeostasis and reduced cell proliferation in crypts. Importantly, all treatments suppressed secretory cell differentiation, reduced mucin protein levels and downregulated expression of tight junction markers, implicating mucosal barrier dysregulation. Furthermore, inflammatory cell infiltration and upregulated expression of inflammatory cytokine genes in colons, coupled with increased serum inflammatory cytokine levels, were observed in all treatments. All results show that both BPA and BPF at the reference dose disrupted Notch/Wnt signaling and intestinal homeostasis, thereby leading to mucosal barrier dysregulation and intestinal inflammation in mice. This is the first study revealing the adverse influences of BPF on mammal intestines and underlying mechanisms for bisphenol-caused intestinal injury. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Formula: C13H12O2).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Formula: C13H12O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chu, Junyu et al. published their research in Reactive & Functional Polymers in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.SDS of cas: 620-92-8

Design and synthesis of gradient-refractive index isosorbide-based polycarbonates for optical uses was written by Chu, Junyu;Wang, Heng;Zhang, Yiwen;Li, Zhengkai;Zhang, Zhencai;He, Hongyan;Zhang, Qinqin;Xu, Fei. And the article was included in Reactive & Functional Polymers in 2022.SDS of cas: 620-92-8 The following contents are mentioned in the article:

The synthesis of bio-based polymers using renewable bio-monomers have received extensive research attention to meet the concept of environmental sustainability. Isosorbide (ISB) derived from biomass is commonly used in the polycarbonate industry as an alternative to bisphenol A (BPA) because it is green, non-toxic, and more widely available. Compared to BPA-based polycarbonate, isosorbide-based polycarbonate has excellent properties such as high transparency, easy coloration, and outstanding rigidity. However, the naturally low refractive index of isosorbide triggers the latter to fall outside the threshold of optical applications. In order to further improve the refractive index of isosorbide-based polycarbonate without affecting its transparency and rigidity, a copolymerization scheme of bisphenol monomers (BPs) with isosorbide is proposed in this work. A series of isosorbide-bisphenol copolycarbonates were synthesized by a melt polycondensation process using ionic liquid 1,4-(1,4-diazabicyclo[2.2.2]octane)butyl dibromide ([C4(DABCO)2][Br]2) as the catalyst. As expected, the monomer structure had significant effect on the optical property and mol. weight of the copolycarbonates, the monomer bis(p-hydroxyphenyl) ether (BPO) had better reactivity among the screened seven monomers resulting in relatively higher mol. weight Moreover, poly(BPO-co-ISB carbonate) (POIC) using BPO as the monomer exhibited a high Abbe number (vd = 39.7), low yellowness index (YI = 0.93), and a higher refractive index (nd = 1.536), which was much higher than poly(isosorbide carbonate) (1.496). Therefore, a series of POICs were further prepared to investigate the effect of BPO content on the optical, thermal, mech., and hydrophobic properties of the materials. The results showed that the copolymers POICs had higher refractive indexes (1.511-1.573), better thermal stability, flexibility, hydrophobicity and processing-friendly glass transition temperature (Tg) and pencil hardness, and thus are expected to be sustainable materials for optical lenses. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8SDS of cas: 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.SDS of cas: 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Melough, Melissa M. et al. published their research in Environmental Research in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Reference of 620-92-8

Diet quality and exposure to endocrine-disrupting chemicals among US adults was written by Melough, Melissa M.;Maffini, Maricel V.;Otten, Jennifer J.;Sathyanarayana, Sheela. And the article was included in Environmental Research in 2022.Reference of 620-92-8 The following contents are mentioned in the article:

Human exposure to endocrine-disrupting chems. (EDCs) may increase risk for chronic disease. Diet is a significant source of EDC exposure, yet healthy diets recommended for chronic disease prevention have not been thoroughly examined for associations with EDC exposure. Using data from the National Health and Nutrition Examination Survey 2013-2016, we examined associations of dietary patterns with exposure to non-persistent EDCs potentially consumed through diet. EDCs were measured in spot urine samples. Diet was assessed using 24-h recalls. Multivariable linear regression was used to examine associations of three healthy diet scores [Healthy Eating Index (HEI), relative Mediterranean Diet (rMED), and Dietary Approaches to Stop Hypertension] and fast-food consumption with EDCs. In fully adjusted models, no diet was associated with exposure to the bisphenols, phthalates, or polycyclic aromatic hydrocarbons examined A 1-point increase in rMED (of 18 possible points) was associated with 2.7% (95% CI: 1.7%, 3.8%) greater urinary nitrate. A 10-point increase in HEI (of 100 possible points) was associated with 5.3% (95% CI: 2.8%, 7.9%) greater nitrate and 6.8% (95% CI: 4.5%, 9.2%) greater perchlorate. Because perchlorate and nitrate can disrupt thyroid hormone production, we conducted an exploratory anal. to examine whether these chems. mediate an association between diet and thyroid hormones. A 10-point increase in HEI was associated with 0.6% reduced serum total thyroxine (95% CI: 1.7%, 0.5%) among all adults, with 57.5% of the effect explained by perchlorate. Nitrate mediated an association of rMED with modestly reduced total triiodothyronine among females. Most EDCs examined had no association with the diets evaluated, indicating that recommended healthy diets were not protective against EDC exposures. As observed with two thyroid antagonists, some recommended diets may increase EDC exposures and related adverse health outcomes. Addnl. work should identify effective food production and processing practices to reduce dietary exposures to potentially harmful EDCs. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Reference of 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Reference of 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jia, Lu-Lu et al. published their research in Science of the Total Environment in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Related Products of 620-92-8

Long-term stability of several endocrine disruptors in the first morning urine samples and their associations with lifestyle characteristics was written by Jia, Lu-Lu;Luan, Yu-Ling;Shen, Hui-Min;Guo, Ying. And the article was included in Science of the Total Environment in 2022.Related Products of 620-92-8 The following contents are mentioned in the article:

Parabens, triclosan (TCS), bisphenols, benzophenones, and phthalates are typical endocrine disruptors (EDs) with short half-lives in the human body. The concentration levels of those EDs in a spot urine sample are frequently used in exposure assessment studies, and the reproducibility of urinary levels of these nonpersistent EDs should be considered. In the present study, we consecutively collected 45-day first morning void (FMV) urine samples, as well as daily questionnaires, in six recruited participants and measured the urinary concentrations of six parabens, TCS, nine bisphenols, five benzophenones, and ten phthalate metabolites by using high-performance liquid chromatog.-tandem mass spectrometry. MeP, EtP, PrP, TCS, BPA, BPS, BPF, and most phthalate metabolites were frequently detected (over 62% of samples). The intraclass correlation coefficients (ICCs) for ED concentrations in FMV urine samples ranged from fair to excellent for MeP (0.683), EtP (0.702), BPA (0.505), BPS (0.908), BPF (0.887), BP-3 (0.712), mMP (0.661), mEP (0.523), mBP (0.500), miBP (0.724), mBzP (0.961) and all metabolites of DEHP (0.867-0.957), whereas they were low for PrP (0.321) and TCS (0.306). After creatinine adjustment, the values of ICCs for most target EDs were increased with mild to significant improvement. The stability of ED concentrations was affected by daily diet (MeP, TCS, BPA, mMP, miBP, mBP and mBzP), food containers (PrP and mECPP), use of personal care products (HMWP metabolites), pharmaceuticals (EtP) and recorded activities (BPS, mEHP, mBzP, mEHHP and mEOHP), as confirmed by a general linear mixed model. Furthermore, extending the FMV sampling period improved the probability of acceptable reproducibility (ICCs > 0.40) of MeP, EtP, BP-3 and mEP concentrations For BPS, BPF and HMWP metabolite concentrations showed high probabilities (>80%) of acceptable reproducibility in the last three days, and the increasing sample size slowly improved the ability to discriminate the subjects. The results were exactly the opposite for BPA concentrations This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Related Products of 620-92-8).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Related Products of 620-92-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts