Sep 2021 News A new synthetic route of 597-31-9

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,597-31-9, its application will become more common.

Application of 597-31-9 ,Some common heterocyclic compound, 597-31-9, molecular formula is C5H10O2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

2,2-dimethyl-3-hydroxy – propionaldehyde(hydroxypivalaldehyde, Mitsubishi Gas Chemical Co., Ltd., purity 99.8%) 121.8gand 2-ethyl-2-hydroxymethyl- propane-1,3 – diol (trimethylolpropane, TokyoChemical industry reagent) 159.2 g, and benzene 1054g, granular Nafion (tradename “NR-50”, sigma-Aldrich reagent) 5.3g were housed in a 2 literround bottomed flask and at atmospheric pressure, water produced was withdrawnoutside the system using a Dean-Stark trap while azeotroping with benzene, andallowed to react until distillation of water ceased. This was filtered and thenrecrystallized by concentrating and cooling, to give 219.9g of crystal of 2-(5-ethyl-5-hydroxymethyl – [1,3] dioxan-2-yl) -2-methyl – propan-1-ol (hereinafter, referred to as “compound HTPA”.) as the sum of thegeometric isomers. Below, this synthetic reaction scheme was illustrated.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,597-31-9, its application will become more common.

Reference:
Patent; MITSUBISHI GAS CHEMICAL COMPANY INCORPORATED; OKAMOTO, ATSUSHI; SATO, HIDEYUKI; (21 pag.)JP2016/13986; (2016); A;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

New learning discoveries about 3-Hydroxy-2,2-dimethylpropanal

With the rapid development of chemical substances, we look forward to future research findings about 597-31-9.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 597-31-9, name is 3-Hydroxy-2,2-dimethylpropanal, molecular formula is C5H10O2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below. Computed Properties of C5H10O2

Hydrogenation; The starting solution used was the mixture described above as the hydrogenation feed. Approx. 10% by weight, based on the hydrogenation feed, of a 15% aqueous solution of trimethylamine were added to the mixture. The feed thus obtained was conducted in trickle mode at H2 pressure 40 bar through the reactor heated to 120 C. The hourly space velocity was 0.4 kg of HPA (IcaL*h). A portion of the hydrogenation effluent was added again to the feed (circulation mode). The ratio of circulation to feed was 10:1. The pH of samples of the reactor effluent at room temperature was found to be 8.9.An aqueous solution comprising approx. 69% NPG, approx. 1.8% HPN, approx. 2% isobutanol, approx. 3.5% methanol, approx. 2% TMA, remainder water, was obtained after the hydrogenation.

With the rapid development of chemical substances, we look forward to future research findings about 597-31-9.

Reference:
Patent; Sirch, Tilman; Steiniger, Michael; Maas, Steffen; Rittinger, Stefan; Schlitter, Stephan; US2010/113836; (2010); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The origin of a common compound about 3-Hydroxy-2,2-dimethylpropanal

The synthetic route of 597-31-9 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 597-31-9, name is 3-Hydroxy-2,2-dimethylpropanal, the common compound, a new synthetic route is introduced below. Product Details of 597-31-9

The hydroxypivalaldehyde and sodium hydroxide solution obtained in the step (3) were added to a four-necked flask, heated and refluxed for 2 hours with stirring at 85 to 95 C,The weight ratio of the BaO / SiO2 core-shell microsphere catalyst was 27: 5: 270: 15, the weight ratio of the catalyst was 4: Stirring to 60 C while adding ammonia to keep the pH of the reaction solution 7-9, 8 hours after the stop reaction, the reaction solution suction filter, the filtrate concentration adjusted with concentrated hydrochloric acid ph value 3-4, extracted with acetone , After evaporation of acetone standing, precipitation crystallization is hydroxy pivalic acid, the yield was 91%

The synthetic route of 597-31-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Suzhou Yi Dike Pharmaceutical Chemical Co; Hu, Haiwei; Ding, Jing; Yan, Yongping; Zheng, Hui; Yan, Hui; (7 pag.)CN105753684; (2016); A;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Some scientific research about 3-Hydroxy-2,2-dimethylpropanal

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 597-31-9, 3-Hydroxy-2,2-dimethylpropanal.

Synthetic Route of 597-31-9, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 597-31-9, name is 3-Hydroxy-2,2-dimethylpropanal, molecular formula is C5H10O2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

Test SetupThe liquid phase hydrogenation was effected over a commercial supported nickel catalyst in the tubular reactor in liquid phase mode. The catalyst volume was 1.8 liters. The hydroxypivalaldehyde-containing crude aldol addition product and hydrogen were supplied continuously at the bottom of the tubular reactor. The hydrogenated material was withdrawn via the top of the tubular reactor, passed into a high-pressure separator and conducted out of the latter by means of level control into an ambient pressure reservoir. The hydrogenation temperature, the hydrogen pressure and the catalyst hourly space velocity were adjusted according to the conditions of the tables which follow. The crude hydroxypivalaldehyde-containing aldol addition product used for the hydrogenation tests had the following typical composition.Organic component (determined by gas chromatography, data in percent): In the analysis data given below for the starting streams, the critical contents for the aliphatic alcohols serving as diluents and the water content were reported. In the analysis of the hydrogenation outputs, the residual contents of HPA and of ester compounds and the NPG content were stated.Liquid phase hydrogenation of HPA at a hydrogenation temperature of 130 C.As a comparison of the test data shows, the proportion of the desired NPG in the hydrogenation output also increases with rising water content in the starting mixture. When, for example, proceeding from test 3, the water content is established below the critical limit of 15% by weight (comparative test 5), the NPG content in the hydrogenation output is lowered. This development is also manifested in tests 6, 7, and 8 (comparative), in which the content of NPG in the hydrogenation output likewise decreases with falling water content in the starting material. The pressure selected in comparative example 9 is no longer sufficient for a satisfactory HPA conversion.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 597-31-9, 3-Hydroxy-2,2-dimethylpropanal.

Reference:
Patent; Schalapski, Kurt; Kretz, Tonia; Kreickmann, Thosrten; Heymanns, Peter; Lukas, Rainer; Schulz, Rolf-Peter; US2011/98515; (2011); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Extended knowledge of 3-Hydroxy-2,2-dimethylpropanal

At the same time, in my other blogs, there are other synthetic methods of this type of compound,597-31-9, 3-Hydroxy-2,2-dimethylpropanal, and friends who are interested can also refer to it.

Adding a certain compound to certain chemical reactions, such as: 597-31-9, 3-Hydroxy-2,2-dimethylpropanal, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Recommanded Product: 3-Hydroxy-2,2-dimethylpropanal, blongs to alcohols-buliding-blocks compound. Recommanded Product: 3-Hydroxy-2,2-dimethylpropanal

EXAMPLE 1Preparation of an Aqueous Polymethylol Mixture by the Hydrogenation ProcessStage a) Aldol Reaction:Approx. 750 g/h of isobutyraldehyde (approx. >99.5 GC area % of IBA) were reacted with approx. 700 g/h of formaldehyde (approx. 49% formaldehyde, 1.5% of methanol, remainder water) and 80 g/h of trimethylamine solution (50% TMA in water) in a two-stage stirred tank cascade.Stage b) Distillative Separation of the Reaction Mixture from Stage a):Subsequently, the solution was freed of low boilers by distillation in a column. The column was equipped with 1.5 m of fabric packing (specific surface area 500 m2/m3) in the rectifying section and 4 m of sheet metal packing (250 m2/m3). The aldolization discharge was fed in above the sheet metal packing. At the top of the column, a condenser with cooling water (approx. 10 C.) and a downstream phase separator was used. At the top, the distillate was fed to the condenser in gaseous form. Approx. 255 g/h of liquid condensate were obtained. In the phase separator connected downstream, an aqueous phase of 95 g/h was removed and fed completely to the column. In addition, 135 g/h were fed from the phase separator to the first stirred tank. In order to maintain the regulation temperature in the column at 85 C., 25 g/h of organic phase were additionally fed to the column. In the cold trap connected downstream of the condenser, approx. 1 g/h of liquid was obtained (approx. 80% IBA, approx. 20% TMA), which was likewise recycled.The IBA removal was conducted at a top pressure of approx. 1 bar absolute. The evaporator used was a falling film evaporator. A bottom temperature in the bottom of the column of 104 C. was established. The reflux rate (i.e. cooling water rate of the partial condenser) to the column was regulated by means of the temperature in the middle of the fabric packing; a temperature of 85 C. was established.By means of a pump, approx. 100 kg/h of liquid were drawn off from the bottom of the column. This was fed to the falling film evaporator (consisting of an oil-heated stainless steel tube, length 2.5 m, internal diameter approx. 21 mm, wall thickness approx. 2 mm). Approx. 1.5 kg/h of product with a concentration of approx. 0.3% isobutyraldehyde were drawn off from the bottom of the falling film evaporator. The vapors and excess liquid were fed to the bottom of the column. The bottom product discharged comprised approx. 70% by weight of HPA, approx. 1.5% by weight of HPN, 0.3% by weight of IBA, remainder water.Stage c) Hydrogenation of the Bottom Discharge from Stage b):The resulting bottom product was subsequently subjected to a hydrogenation by means of a fixed bed.The catalyst was activated as follows:150 ml of a Cu/Al2O3 catalyst as described in EP 44444 and PF57216 were activated in a tubular reactor at 190 C. by passing over a mixture of 5% by volume of hydrogen and 95% by volume of nitrogen (total volume 50 l (STP)/h) at ambient pressure for 24 hours.The hydrogenation was performed as follows:The starting solution used was the mixture described above as hydrogenation feed. Approx. 10% by weight based on the hydrogenation feed of a 15% aqueous solution of trimethylamine was added to the mixture. The feed thus obtained was conducted in trickle mode at H2 pressure 40 bar through the reactor heated to 120 C. The space velocity was 0.4 kg of HPA/(Icat*h). A portion of the hydrogenation discharge was added again to the feed (circulation mode). The ratio of circulation to feed was 10:1. The pH of samples of the reactor discharge at room temperature was measured at 8.9.The composition of the aqueous polymethylol mixture from stage c) was:NPG: 69% by weight Methanol: 3.5% by weight TMA: 2% by weight. organic secondary compounds (HPA, isobutanol): <2% by weight TMA formate: 1% by weight Water: 23% by weight At the same time, in my other blogs, there are other synthetic methods of this type of compound,597-31-9, 3-Hydroxy-2,2-dimethylpropanal, and friends who are interested can also refer to it. Reference:
Patent; BASF-SE; US2012/4472; (2012); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Analyzing the synthesis route of 597-31-9

At the same time, in my other blogs, there are other synthetic methods of this type of compound,597-31-9, 3-Hydroxy-2,2-dimethylpropanal, and friends who are interested can also refer to it.

Reference of 597-31-9, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 597-31-9, name is 3-Hydroxy-2,2-dimethylpropanal. A new synthetic method of this compound is introduced below.

2) Synthesis of Hydroxypivalic Acid: Add 40 ml of water to a 500 ml three-necked flask, start stirring, add 85 g of hydroxypivalaldehyde and 0.85 g of phosphotungstic acid catalyst, and then start heating. When the temperature rises to 55 C, Adding 123g of hydrogen peroxide, and adding for 2 hours; the oxidizing liquid is dehydrated under reduced pressure, filtering after dehydration to obtain the catalyst, taking out and reusing, and cooling and crystallizing the filtrate to obtain hydroxypivalic acid solution. 3) Drying: Hydroxypivalic acid solution was filtered to obtain wet products, the use of vacuum dryer for drying, temperature control at 58 , vacuum control in 0.085MPa, the final product hydroxypivalic acid, product yield of 85%.

At the same time, in my other blogs, there are other synthetic methods of this type of compound,597-31-9, 3-Hydroxy-2,2-dimethylpropanal, and friends who are interested can also refer to it.

Reference:
Patent; Jihua Jiangcheng Chemical Industry Co., Ltd; Sun, Chengjun; Chu, Ke; (8 pag.)CN105753683; (2016); A;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

A new synthetic route of 3-Hydroxy-2,2-dimethylpropanal

With the rapid development of chemical substances, we look forward to future research findings about 597-31-9.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 597-31-9, name is 3-Hydroxy-2,2-dimethylpropanal, molecular formula is C5H10O2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below. Quality Control of 3-Hydroxy-2,2-dimethylpropanal

116 parts by mass of pentaerythritol was dissolved in 1800 parts by mass of water, and methanesulfonic acid (a product of Wako Pure Chemical Industries Ltd.) was added thereto to make the resultant solution at pH 1.6. To the solution, 290 parts by mass of the HPA aqueous solution A prepared in Production Example 2 was added dropwise over 3 hours. A reaction temperature was set to 90 C. After completing the dropwise addition, the resultant solution was aged at 90 C. for 12 hours. After completing the aging, the resultant reaction solution was divided into 765 parts by mass and 1441 parts by mass, and the 1441 parts by mass of the reaction solution was solid-liquid separated to obtain 183 parts by mass of wet spiroglycol and 1130 parts by mass of a filtrate. Thereafter, the thus obtained wet spiroglycol was neutralized and washed with 500 parts by mass of a 500 ppm sodium hydroxide aqueous solution, and subsequently the resultant was washed with 500 parts by mass of water. Thereafter, the spiroglycol was dried. Incidentally, the 765 parts by mass of the reaction solution also contains spiroglycol crystals, and the spiroglycol crystals work as a seed crystal in the reaction of the subsequent second and later cycles. (Second to Fifteenth Cycles of Spiroglycol Synthesis) (0159) 765 parts by mass of the reaction solution obtained in the reaction of the first cycle, 1000 parts by mass of the filtrate obtained in the reaction of the first cycle, 25 parts by mass of water, 116 parts by mass of pentaerythritol and 0.7 parts by mass of methanesulfonic acid were mixed. Here, the resultant solution had pH 1.6. To this solution, 290 parts by mass of the HPA aqueous solution A was added dropwise over 3 hours. A reaction temperature was set to 90 C. After completing the dropwise addition, the resultant was aged at 90 C. for 3 hours. After completing the aging, the resultant reaction solution was divided into 765 parts by mass and remaining 1431.7 parts by mass, and the 1431.7 parts by mass of the reaction solution was solid-liquid separated to obtain 244 parts by mass of wet spiroglycol and 1083 parts by mass of a filtrate. (0160) Then, also in the reaction of the third and later cycles, the reaction was repeatedly performed by mixing 765 parts by mass of the reaction solution obtained in the previous cycle, 1000 parts by mass of the filtrate, 25 parts by mass of water, 116 parts by mass of pentaerythritol and 0.7 parts by mass of methanesulfonic acid, and adding 290 parts by mass of the HPA aqueous solution A dropwise thereto over 3 hours. In the reaction of each cycle, about 80 to 90% by mass of the mother liquor of the whole reaction solution obtained in the previous cycle was used in the reaction of the next cycle. This synthesis reaction was repeatedly performed, and a stable mother liquor composition was obtained. In the reaction of the fifteenth cycle, the dried spiroglycol was obtained in an amount of 236 parts by mass in total. The yield of the spiroglycol based on the charged pentaerythritol (excluding the pentaerythritol contained in the filtrate) was 91.7% by mol.The same synthesis as that of Reference Example 5 was performed by mixing 765 parts by mass of the reaction solution obtained in the reaction of the fifteenth cycle of Reference Example 5, 1000 parts by mass of the filtrate, 25 parts by mass of water, 116 parts by mass of pentaerythritol and 0.7 parts by mass of methanesulfonic acid, and adding 290 parts by mass of the HPA aqueous solution A dropwise thereto over 3 hours (corresponding to the first cycle of SPG synthesis illustrated in FIGS. 1 and 2). Then, 765 parts by mass of the reaction solution obtained by the reaction of this first cycle was used and mixed with 1000 parts by mass of the filtrate, 25 parts by mass of water, 116 parts by mass of pentaerythritol and 0.7 parts by mass of methanesulfonic acid, and 290 parts by mass of the HPA aqueous solution A was added dropwise over 3 hours to repeatedly perform the synthesis reaction of spiroglycol. This spiroglycol synthesis reaction was further repeated until an impurity concentration in the resultant spiroglycol was stabilized. (0163) The gas chromatographic purity of the spiroglycol obtained in the eleventh cycle of the SPG synthesis was found to be 99.58 area % of spiroglycol, with 0.01 area % of dioxane triol monoformal, 0.11 area % of hydroxypivalaldehyde neopentyl glycol acetal and 0.14 area % of spiro monoalcohol. The results are shown in Table 1. Besides, the transition of the impurity concentration in the spiroglycol is illustrated in FIGS. 1 and 2.

With the rapid development of chemical substances, we look forward to future research findings about 597-31-9.

Reference:
Patent; Mitsubishi Gas Chemical Company, Inc.; YAMANE, Masahiro; (16 pag.)US2019/55259; (2019); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

A new synthetic route of 3-Hydroxy-2,2-dimethylpropanal

With the rapid development of chemical substances, we look forward to future research findings about 597-31-9.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 597-31-9, name is 3-Hydroxy-2,2-dimethylpropanal, molecular formula is C5H10O2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below. Quality Control of 3-Hydroxy-2,2-dimethylpropanal

116 parts by mass of pentaerythritol was dissolved in 1800 parts by mass of water, and methanesulfonic acid (a product of Wako Pure Chemical Industries Ltd.) was added thereto to make the resultant solution at pH 1.6. To the solution, 290 parts by mass of the HPA aqueous solution A prepared in Production Example 2 was added dropwise over 3 hours. A reaction temperature was set to 90 C. After completing the dropwise addition, the resultant solution was aged at 90 C. for 12 hours. After completing the aging, the resultant reaction solution was divided into 765 parts by mass and 1441 parts by mass, and the 1441 parts by mass of the reaction solution was solid-liquid separated to obtain 183 parts by mass of wet spiroglycol and 1130 parts by mass of a filtrate. Thereafter, the thus obtained wet spiroglycol was neutralized and washed with 500 parts by mass of a 500 ppm sodium hydroxide aqueous solution, and subsequently the resultant was washed with 500 parts by mass of water. Thereafter, the spiroglycol was dried. Incidentally, the 765 parts by mass of the reaction solution also contains spiroglycol crystals, and the spiroglycol crystals work as a seed crystal in the reaction of the subsequent second and later cycles. (Second to Fifteenth Cycles of Spiroglycol Synthesis) (0159) 765 parts by mass of the reaction solution obtained in the reaction of the first cycle, 1000 parts by mass of the filtrate obtained in the reaction of the first cycle, 25 parts by mass of water, 116 parts by mass of pentaerythritol and 0.7 parts by mass of methanesulfonic acid were mixed. Here, the resultant solution had pH 1.6. To this solution, 290 parts by mass of the HPA aqueous solution A was added dropwise over 3 hours. A reaction temperature was set to 90 C. After completing the dropwise addition, the resultant was aged at 90 C. for 3 hours. After completing the aging, the resultant reaction solution was divided into 765 parts by mass and remaining 1431.7 parts by mass, and the 1431.7 parts by mass of the reaction solution was solid-liquid separated to obtain 244 parts by mass of wet spiroglycol and 1083 parts by mass of a filtrate. (0160) Then, also in the reaction of the third and later cycles, the reaction was repeatedly performed by mixing 765 parts by mass of the reaction solution obtained in the previous cycle, 1000 parts by mass of the filtrate, 25 parts by mass of water, 116 parts by mass of pentaerythritol and 0.7 parts by mass of methanesulfonic acid, and adding 290 parts by mass of the HPA aqueous solution A dropwise thereto over 3 hours. In the reaction of each cycle, about 80 to 90% by mass of the mother liquor of the whole reaction solution obtained in the previous cycle was used in the reaction of the next cycle. This synthesis reaction was repeatedly performed, and a stable mother liquor composition was obtained. In the reaction of the fifteenth cycle, the dried spiroglycol was obtained in an amount of 236 parts by mass in total. The yield of the spiroglycol based on the charged pentaerythritol (excluding the pentaerythritol contained in the filtrate) was 91.7% by mol.The same synthesis as that of Reference Example 5 was performed by mixing 765 parts by mass of the reaction solution obtained in the reaction of the fifteenth cycle of Reference Example 5, 1000 parts by mass of the filtrate, 25 parts by mass of water, 116 parts by mass of pentaerythritol and 0.7 parts by mass of methanesulfonic acid, and adding 290 parts by mass of the HPA aqueous solution A dropwise thereto over 3 hours (corresponding to the first cycle of SPG synthesis illustrated in FIGS. 1 and 2). Then, 765 parts by mass of the reaction solution obtained by the reaction of this first cycle was used and mixed with 1000 parts by mass of the filtrate, 25 parts by mass of water, 116 parts by mass of pentaerythritol and 0.7 parts by mass of methanesulfonic acid, and 290 parts by mass of the HPA aqueous solution A was added dropwise over 3 hours to repeatedly perform the synthesis reaction of spiroglycol. This spiroglycol synthesis reaction was further repeated until an impurity concentration in the resultant spiroglycol was stabilized. (0163) The gas chromatographic purity of the spiroglycol obtained in the eleventh cycle of the SPG synthesis was found to be 99.58 area % of spiroglycol, with 0.01 area % of dioxane triol monoformal, 0.11 area % of hydroxypivalaldehyde neopentyl glycol acetal and 0.14 area % of spiro monoalcohol. The results are shown in Table 1. Besides, the transition of the impurity concentration in the spiroglycol is illustrated in FIGS. 1 and 2.

With the rapid development of chemical substances, we look forward to future research findings about 597-31-9.

Reference:
Patent; Mitsubishi Gas Chemical Company, Inc.; YAMANE, Masahiro; (16 pag.)US2019/55259; (2019); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Analyzing the synthesis route of 597-31-9

According to the analysis of related databases, 597-31-9, the application of this compound in the production field has become more and more popular.

Application of 597-31-9, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 597-31-9, name is 3-Hydroxy-2,2-dimethylpropanal, molecular formula is C5H10O2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

To a solution of N-(2-(difluoromethoxy)-6-methylpyridin-3-yl)-3-(2-isopropylphenyl)azetidine-3-carbox-amide Ex 3 (68 mg, 0.18 mmol) and 3-hydroxy-2,2-dimethyl-propanal (25 mg, 0.245 mmol) in MeOH (2 mL) under inert atmosphere is added sodium cyanoborohydride (18 mg, 0.29 mmol). The reaction mixture is stirred at 50C for 2 h (reaction monitored by LCMS) and is then quenched with water (2 mL). The mixture is diluted with MeCN (2 mL) and is then purified by prep. HPLC (Prep-HPLC-3 conditions) to give the title compound Ex 11-17 (46 mg, 55% yield) as a colorless glass. LCMS-1 : tR = 0.79 min, [M+1]+ 462.41; 1H NMR (500 MHz, CDC )<5: 8.61 (d, J = 8.1 Hz, 1 H), 8.07 (s, 1 H), 7.42-7.35 (m, 3 H), 7.33-7.29 (m, 1 H), 7.19 (d, J = 7.7 Hz, 1 H), 6.92 (d, J = 8.1 Hz, 1 H), 4.25 (s br, 2 H), 3.70 (s br, 2 H), 3.50 (s, 2 H), 2.60 (s, 2 H), 2.53-2.45 (m, 1 H), 2.39 (s, 3 H), 1.14 (d, J = 6.7 Hz, 6 H), 0.94 (s, 6 H). According to the analysis of related databases, 597-31-9, the application of this compound in the production field has become more and more popular. Reference:
Patent; IDORSIA PHARMACEUTICALS LTD; BOLLI, Martin; BROTSCHI, Christine; LESCOP, Cyrille; WILLIAMS, Jodi T.; (0 pag.)WO2019/234115; (2019); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Simple exploration of 597-31-9

With the rapid development of chemical substances, we look forward to future research findings about 597-31-9.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 597-31-9, name is 3-Hydroxy-2,2-dimethylpropanal. This compound has unique chemical properties. The synthetic route is as follows. HPLC of Formula: C5H10O2

Example 214 3-(((3R,3aS,9bS)-9b-((4-fluorophenyl)sulfonyl)-7-(perfluoropropan-2-yl)-2,3,3a,4,5,9b-hexahydro-1H-cyclopenta[a]naphthalen-3-yl)amino)-2,2-dimethylpropan-1-ol A solution of (3R,3aS,9bS)-9b-((4-fluorophenyl)sulfonyl)-7-(perfluoropropan-2-yl)-2,3,3a,4,5,9b-hexahydro-1H-cyclopenta[a]naphthalen-3-amine (Example 114; 20.0 mg, 0.039 mmol) in DCM (1 mL) was treated with DIEA (14 muL, 0.078 mmol) and 3-hydroxy-2,2-dimethylpropanal (39.8 mg, 0.390 mmol) and stirred at rt. After 45 min the mixture was treated with sodium triacetoxyborohydride (33.0 mg, 0.156 mmol) and stirred at rt overnight. The mixture was treated with a drop of saturated aqueous NaHCO3, concentrated and purified by preparative HPLC (Method E, gradient 48-88% B, 20 min) to provide 3-(((3R,3aS,9bS)-9b-((4-fluorophenyl)sulfonyl)-7-(perfluoropropan-2-yl)-2,3,3a,4,5,9b-hexahydro-1H-cyclopenta[a]naphthalen-3-yl)amino)-2,2-dimethylpropan-1-ol (7.2 mg, 30% yield). LCMS m/z 600.2 (M+H)+; HPLC tR 1.91 min (Method C). 1H NMR (500 MHz, DMSO-d6) delta 7.48 (s, 2H), 7.36-7.20 (m, 5H), 3.25-3.14 (m, 2H), 2.98 (br dd, J=10.8, 3.5 Hz, 1H), 2.82 (q, J=7.2 Hz, 1H), 2.73-2.66 (m, 1H), 2.61 (br d, J=15.6 Hz, 1H), 2.48-2.32 (m, 2H), 2.22-2.06 (m, 2H), 2.03-1.82 (m, 3H), 1.75-1.60 (m, 1H), 1.35-1.17 (m, 1H), 0.82 (2s, 6H).

With the rapid development of chemical substances, we look forward to future research findings about 597-31-9.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; Marcoux, David; Beaudoin Bertrand, Myra; Dhar, T.G. Murali; Yang, Michael G.; Xiao, Zili; Xiao, Hai-Yun; Zhu, Yeheng; Weigelt, Carolyn A.; Batt, Douglas G; (154 pag.)US2018/127368; (2018); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts