Dambatta, Mubarak B.’s team published research in Tetrahedron in 2020-11-06 | CAS: 584-02-1

Tetrahedron published new progress about Alkylation. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Application In Synthesis of 584-02-1.

Dambatta, Mubarak B. published the artcileTransition metal free α-C-alkylation of ketones using secondary alcohols, Application In Synthesis of 584-02-1, the main research area is aryl ketone preparation; ketone secondary alc alkylation.

A base-mediated α-C-alkylation of aryl Me ketones with secondary alcs. was developed for the synthesis of aryl ketones ArC(O)CH2CH(R1)(R2) [R1 = Me, Et; R2 = Me, Et, Ph, etc.; R1R2 = (CH2)4, (CH2)5, (CH2)6, etc.; Ar = 2,4,6-(Me)3C6H2, 2,3,5,6-(Me)4C6H, 2,3,4,5,6-pentamethylphenyl, etc.]. This transition metal free approach employed KOt-Bu as the base and exhibited a broad scope, allowing a range of commodity aliphatic secondary alcs. Aryl Me ketones underwent selective mono-α-C-alkylation in high isolated yields (23 examples, 65% average yield).

Tetrahedron published new progress about Alkylation. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Application In Synthesis of 584-02-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, X.’s team published research in Journal of Applied Microbiology in 2021 | CAS: 584-02-1

Journal of Applied Microbiology published new progress about Alternaria. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Application In Synthesis of 584-02-1.

Wang, X. published the artcileIsolation and characterization of endophytic bacteria for controlling root rot disease of Chinese jujube, Application In Synthesis of 584-02-1, the main research area is Ziziphus Fusarium endophytic bacteria root rot disease; Brevibacterium halotolerans ; Fusarium oxysporum ; Chinese jujube; biological control; endophytic bacteria; root rot disease.

Fusarium oxysporum is the primary pathogen causing root rot disease that severely affects cultivation of jujube fruit in the Xinjiang province of China. The aim of this study was to identify endophytic bacteria in healthy jujube organs that could effectively suppress F. oxysporum growth. Different plant organs (leaves, twigs and roots) were collected from healthy Chinese jujube cultivated in southern Xinjiang province of China. The endophytic bacterium Brevibacterium halotolerans JZ7 was selected for its strong antagonistic activity and growth-promoting characteristics. Gas-chromatog. mass-spectrometry anal. showed that acetoin, 2,3-butanediol and fenretinide were the three dominant volatile organic compounds produced by strain JZ7. Fenretinide strongly suppressed spore germination of F. oxysporum in vitro. Pot experiments showed that strain JZ7 colonized both the roots and rhizosphere soil of Chinese jujube and significantly reduced F. oxysporum level in jujube rhizosphere soil. We demonstrated that B. halotolerans JZ7 can be developed into a biol. control agent to combat root rot disease of Chinese jujube in the Xinjiang province of China. Significance and Impact of the Study : The suggested strategy for biol. control of jujube root rot disease is fully in accordance with the current principles of sustainability.

Journal of Applied Microbiology published new progress about Alternaria. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Application In Synthesis of 584-02-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Mangoufis-Giasin, Iosif’s team published research in Journal of Catalysis in 2021-08-31 | CAS: 584-02-1

Journal of Catalysis published new progress about Adsorption. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Safety of 3-Pentanol.

Mangoufis-Giasin, Iosif published the artcileDifferent promoting roles of ruthenium for the oxidation of primary and secondary alcohols on PtRu electrocatalysts, Safety of 3-Pentanol, the main research area is oxidation catalsyt primary econdary alc platinum ruthenium electrocatalyst.

This study shows remarkably different features between the oxidation of secondary and primary C3-C5 alcs. The oxidation of primary alcs. is controlled by the oxidative removal of blocking adsorbates, such as CO, formed after the dissociative adsorption of alc. mols. Conversely, secondary alcs. do not undergo dissociative adsorption and therefore their oxidation is purely controlled by the energetics of the elementary reaction steps. In this respect, a different role of Ru is revealed for the electrooxidation of primary and secondary alcs. on bimetallic Pt-Ru catalysts. Ru enhances the oxidation of primary alcs. via the established bifunctional mechanism, in which the adsorption of (hydr)oxide species that are necessary to remove the blocking adsorbates is favored. In contrast, the oxidation of secondary alcs. is enhanced by the Ru-assisted stabilization of an O-bound intermediate that is involved in the potential-limiting step. This alternative pathway enables the oxidation of secondary alcs. close to the equilibrium potential.

Journal of Catalysis published new progress about Adsorption. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Safety of 3-Pentanol.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhu, Kaili’s team published research in ChemElectroChem in 2021-10-13 | CAS: 584-02-1

ChemElectroChem published new progress about Adsorption. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Computed Properties of 584-02-1.

Zhu, Kaili published the artcileOne-Pot Synthesis of Tensile-Strained PdRuCu Icosahedra toward Electrochemical Hydrogenation of Alkene, Computed Properties of 584-02-1, the main research area is alkene lead ruthenium copper icosahedra one pot synthesis.

Electrochem. hydrogenation (ECH) uses electricity to drive proton (H+) reduction for hydrogenation, which can greatly reduce energy supply and environmental pollution, representing an ideal alternative to traditional thermal hydrogenation. In this work, we put forward tensile-strained PdRuCu alloy to promote ECH. Tensile strain promotes the adsorption of C=C by changing the d-band center. Meanwhile, alloying Ru and Cu into Pd lattice facilitates hydrogenation by weakening Pd-H bonding. Therefore, PdRuCu icosahedra display excellent ECH performance of 2-methyl-3-buten-2-ol (MBE) with specific activity of 227.4μmolMBE nm-2 min-1 at -0.3 V vs. reversible hydrogen electrode (RHE), about 16.1 and 10.5 times higher than that of com. Pd/C and Ru/C, resp. In addition, PdRuCu icosahedra was excellent in the scaling up of substrate concentration combined with anisyl alc. oxidation to produce high-value added anisaldehyde at anode. This work provides a guideline for the rational design of highly active and durable metallic catalyst in ECH.

ChemElectroChem published new progress about Adsorption. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Computed Properties of 584-02-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Vervald, Alexey’s team published research in Fullerenes, Nanotubes, and Carbon Nanostructures in 2022 | CAS: 584-02-1

Fullerenes, Nanotubes, and Carbon Nanostructures published new progress about Aggregates. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Synthetic Route of 584-02-1.

Vervald, Alexey published the artcileDifference in deprotonation for oxygen-containing groups on sp2 and sp3 carbons, Synthetic Route of 584-02-1, the main research area is phenol benzoic acid nanodiamond deprotonation zeta potential.

Does the hybridization of the surface of carbon nanoparticles (CNPs) affect the properties of the surface carboxyl and hydroxyl groups and the features of their deprotonation in water. To answer these questions in this work the structures of graphite-and diamond-like carbon cells with OH and COOH groups optimized by the DFT method were studied. It was found that in the same suspensions the OH and COOH groups deprotonate easier being on carbon with sp2 hybridization rather than sp3. Theor. estimates have shown that in aqueous suspensions of CNPs, “”isolated”” carboxyl COOH groups on sp2/sp3 hybridized carbon sites have pKa in the ranges of 3.5-4.5/4.5-5, and the hydroxyl OH groups – in the ranges of 8.5-10/15-18, resp. The conclusions made on the basis of theor. calculations about the features of deprotonation of surface groups of CNPs are exptl. confirmed by the changes of the zeta-potentials of oxidized detonation nanodiamonds with the change of the pH of the environment.

Fullerenes, Nanotubes, and Carbon Nanostructures published new progress about Aggregates. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Synthetic Route of 584-02-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhou, Shenghui’s team published research in Applied Catalysis, B: Environmental in 2019-07-05 | CAS: 584-02-1

Applied Catalysis, B: Environmental published new progress about Adsorption. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Category: alcohols-buliding-blocks.

Zhou, Shenghui published the artcileZirconium-lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions, Category: alcohols-buliding-blocks, the main research area is zirconium lignosulfonate polyphenolic polymer hydrogen transfer biomass oxygenate mild.

Both value-added utilization of low-rank renewable feedstocks to prepare catalytic materials and selective transformation of bioderived aldehydes are very attractive topics. Herein, lignosulfonate, a waste byproduct from the paper industry, was simply assembled with ZrCl4 under non-toxic hydrothermal conditions for scalable preparation of Zr-containing polyphenolic biopolymer catalysts (Zr-LS). Systematic characterizations indicated that the strong coordination between Zr4+ and phenolic hydroxyl groups in lignosulfonate led to the formation of strong Lewis acid-base couple sites (Zr4+-O2-) and porous inorganic-organic framework structure (mesopores centered at 6.1 nm), while the inherent sulfonic groups in lignosulfonate could serve as Bronsted acidic sites. The cooperative role of these versatile acid-base sites in Zr-LS afforded excellent catalytic performance for Meerwein-Ponndorf-Verley (MPV) reaction of a broad range of bioderived platform chems. under mild conditions (80 °C), especially of furfural (FF) to furfuryl alc. (FA), in quant. yields (96%) with high FA formation rate of 9600 μmol g-1 h-1 and TOF of 4.37 h-1. Kinetic studies revealed that the activation energy of the MPV reduction of FF was as low as 52.25 kJ/mol, accounting for the high reaction rate. Isotopic labeling experiments demonstrated direct hydrogen transfer from the α-C of 2-PrOH to the α-C of FF on acid-base sites was the rate-determining step. Moreover, Zr-LS showed good recyclability for at least seven reaction cycles.

Applied Catalysis, B: Environmental published new progress about Adsorption. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Category: alcohols-buliding-blocks.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

OReilly, Matthew C.’s team published research in Journal of Chemical Education in 2021-10-12 | CAS: 584-02-1

Journal of Chemical Education published new progress about Bromination. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Quality Control of 584-02-1.

OReilly, Matthew C. published the artcileDiscovery-Based Bromination of Alcohols: An Organic Chemistry Experiment Supporting Spectroscopic Analysis and Mechanistic Reasoning, Quality Control of 584-02-1, the main research area is isomeric alc bromination laboratory experiment.

The bromination of six isomeric alcs. is adapted to a discovery-based organic chem. laboratory experiment, whereby students are provided an alc. starting material and are charged with determining the product or product mixture produced using relevant spectroscopic data. The experiment solidifies NMR anal. skills while reinforcing the mechanistic reasoning that supports the study of organic reactions. The laboratory is highly customizable and can be adapted to align with available instrumentation to best meet the needs of students, and it has been successfully implemented at three sep. universities.

Journal of Chemical Education published new progress about Bromination. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Quality Control of 584-02-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

MacQueen, Blake’s team published research in Industrial & Engineering Chemistry Research in 2019-05-22 | CAS: 584-02-1

Industrial & Engineering Chemistry Research published new progress about Deoxidation. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Related Products of alcohols-buliding-blocks.

MacQueen, Blake published the artcileOptimum Reaction Conditions for 1,4-Anhydroerythritol and Xylitol Hydrodeoxygenation over a ReOx-Pd/CeO2 Catalyst via Design of Experiments, Related Products of alcohols-buliding-blocks, the main research area is anhydroerythritol xylitol hydrodeoxygenation ReO palladium Ceria catalyst.

In this study, we demonstrate that for the simultaneous hydrodeoxygenation (HDO) of 1,4-anhydroerythritol a comparable yield of THF is obtained at half the previously reported H2 pressure. The simultaneous hydrodeoxygenation was conducted using a heterogeneous ReOx-Pd/CeO2 catalyst. An L9 Taguchi design of experiment was enacted to elucidate the temperature, pressure, and catalyst loading effects on the yield of the HDO reaction by testing pressures ranging from 40 to 80 bar H2, temperatures of 100-180 °C, and Re loadings of 2-4 weight %. Our design showed that the yield of this reaction is significantly affected by the reaction temperature only. An L9 Taguchi design was conducted for xylitol simultaneous hydrodeoxygenation with pressures ranging from 5 to 10 bar H2, temperatures of 140-180 °C, and Re loadings of 2-4 weight %. The xylitol design elucidated the direct relation of pressure, and the inverse relation of temperature and catalyst loading, to yield with the optimal reaction condition being 140 °C and 10 bar H2.

Industrial & Engineering Chemistry Research published new progress about Deoxidation. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Related Products of alcohols-buliding-blocks.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hofmann, Natalie’s team published research in Organic Letters in 2020-10-16 | CAS: 584-02-1

Organic Letters published new progress about tetrahydroquinoline preparation. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Formula: C5H12O.

Hofmann, Natalie published the artcileSynthesis of tetrahydroquinolines via borrowing hydrogen methodology using a manganese PN3 pincer catalyst, Formula: C5H12O, the main research area is tetrahydroquinoline preparation.

A straightforward and selective synthesis of 1,2,3,4-tetrahydroquinolines starting from 2-aminobenzyl alcs. and simple secondary alcs. is reported. This one-pot cascade reaction is based on the borrowing hydrogen methodol. promoted by a manganese (I) PN3 pincer complex. The reaction selectively leads to 1,2,3,4-tetrahydroquinolines thanks to a targeted choice of base. This strategy provides an atom-efficient pathway with water as the only byproduct. In addition, no further reducing agents are required.

Organic Letters published new progress about tetrahydroquinoline preparation. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Formula: C5H12O.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Silva, Marcela F.’s team published research in Pest Management Science in 2020-04-30 | CAS: 584-02-1

Pest Management Science published new progress about Leaf. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, HPLC of Formula: 584-02-1.

Silva, Marcela F. published the artcileVolatile emissions of watercress (Nasturtium officinale) leaves and passion fruit (Passiflora edulis) seeds against Meloidogyne incognita, HPLC of Formula: 584-02-1, the main research area is Nasturtium Passiflora Meloidogyne leaf seed volatile organic compound nematicidal; Nasturtium officinale; Passiflora edulis; biofumigation; root-knot nematodes; volatile organic compounds.

However, the toxicity of VOCs from watercress leaves (Nasturtium officinale) and passion fruit seeds (Passiflora edulis) against PPNs has not yet been studied. RESULTS : Biofumigation with watercress leaves and passion fruit seeds reduced the infectivity and reproduction of Meloidogyne incognita in tomato plants. The VOCs emitted by watercress leaves and passion fruit seeds caused immobility of M. incognita second-stage juveniles (J2). The reduction in infectivity and reproduction of M. incognita reached 89% and 99%, resp., when J2 were exposed to watercress VOCs. Addnl., water exposed to VOCs emitted by watercress caused 79% M. incognita J2 mortality. The volatilome of the toxic water contained 12 compounds, mainly alcs. The emissions from watercress leaves and passion fruit seeds contained 26 and 12 compounds, resp., according to gas chromatog.-mass spectrometry anal. The 1-octanol occurring in watercress emissions demonstrated in vitro and in vivo nematicidal activity against M. incognita, with a LD necessary to cause 50% mortality (LC50) of 382.5μg mL-1. CONCLUSIONS : Watercress leaf and passion fruit seed macerates emitted VOCs with nematicidal activity against M. incognita. The compound 1-octanol identified in watercress emissions may be useful for the nematicide-producing industry.

Pest Management Science published new progress about Leaf. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, HPLC of Formula: 584-02-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts