Formula: C6H6O3, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 533-73-3, name is Benzene-1,2,4-triol, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.
Dehdar, Ali;Asgari, Ghorban;Leili, Mostafa;Madrakian, Tayyebeh;Seid-mohammadi, Abdolmotaleb research published 《 Step-scheme BiVO4/WO3 heterojunction photocatalyst under visible LED light irradiation removing 4-chlorophenol in aqueous solutions》, the research content is summarized as follows. In the present study, photodegradation of 4-chlorophenol (4-CP) using a step-scheme BiVO4/WO3 heterostructure under visible LED light irradiation (Vis LED) from aqueous solutions was investigated. The photocatalyst was synthesized through the hydrothermal process and characterized phys. and chem. via X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), and Brunnauer-Emmett-Teller (BET) techniques. The effects of the operational parameters i.e., solution pH, contact time, nanocomposite dosage, and initial 4-CP concentration were evaluated. Results indicated that BiVO4/WO3/Vis LED process has higher efficiency in 4-CP degradation than BiVO4/Vis LED, WO3/Vis LED, and BiVO4/WO3 systems. At BiVO4/WO3 concentration of 0.125 g/L, initial pH of 7, and initial 4-CP concentration of 25 mg/L, complete degradation of 4-CP (>97%) was achieved in reaction time of 60 min. The phenol, chlorobenzene, catechol, 4-chlorocatechol, 5-chloro-1,2,4-benzenetriol, hydroquinone, hydroxyhydroquinone, p-benzoquinone, o-benzoquinone, formic acid, acetic acid, and oxalic acid were identified as the major intermediates of 4-CP degradation In optimal condition, 67.5% and 88.5% of TOC and COD removal rates were obtained in 120 min contact time, resp. The degradation of 4-CP was pseudo-first-order kinetics. Through the use of tert-Bu alc. (TBA) and ethylenediamine tetraacetic acid (EDTA) as radical scavengers, hydroxyl radicals and holes were identified as the main active species in photocatalytic degradation Also, a tentative pathway for 4-CP degradation using the Vis LED/BiVO4/WO3 process was proposed.
533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Formula: C6H6O3
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts