Li, Xiaoyan team published research in Pigment & Resin Technology in 2021 | 527-07-1

Reference of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 527-07-1, formula is C6H11NaO7, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Reference of 527-07-1

Li, Xiaoyan;Wang, MengQian;Wu, Gang;Yao, Jiming research published 《 Electrochemical reduction of indigo by combination of sodium borohydride and copper salt》, the research content is summarized as follows. The purpose of this study is to improve the performance of sodium borohydride in reducing indigo at room temperature, the divalent copper ion complex was combined with electrochem. technol. for the reduction of indigo by sodium borohydride. According to the K/S value of the dyed cloth sample, find a more suitable ligand for the copper ion in the catholyte. Response surface anal. tests were performed to evaluate the effects of sodium borohydride concentration, sodium hydroxide concentration and copper sulfate pentahydrate concentration on the reduction potential of the dye solution and the K/S value of the dyed fabric samples. Sodium gluconate was found to be a more suitable ligand for copper ions in catholyte. The effects of NaOH concentration as well as the interaction of NaBH4 and NaOH on the reduction potential of the catholyte and the K/S value of the dyed fabric samples were extremely significant. The optimal concentrations of NaBH4, NaOH and CuSO4·5H2O were 0.5, 2.5 and 0.65 g/L. In the case of the optimized condition, the absolute value of the reduction potential was 968, and the K/S value was 11.92, which is comparable with that of the conventional reduction process with sodium dithionite. The divalent copper ion complex combined with electrochem. technol. was applied in the process of reducing indigo with NaBH4 at room temperature

Reference of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Xiong team published research in Food Chemistry: X in 2021 | 527-07-1

Electric Literature of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

In general, the hydroxyl group makes alcohols polar. 527-07-1, formula is C6H11NaO7, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Electric Literature of 527-07-1

Li, Xiong;Gong, Yufeng;Yao, Wanzi;Chen, Xiaoyong;Xian, Jiebei;You, Lijun;Fardim, Pedro research published 《 Structural characterization and protective effects of polysaccharide from Gracilaria lemaneiformis on LPS-induced injury in IEC-6 cells》, the research content is summarized as follows. This study was aimed to characterize Gracilaria lemaneiformis polysaccharides and evaluate their protective effects on Lipopolysaccharide-induced injury in IEC-6 cells. The G. lemaneiformis polysaccharide was degraded by UV/H2O2 treatment and purified to three fractions named GLP-1.0 M, GLP-1.4 M and GLP-1.6 M. The purified fractions were mainly composed of galactose, glucose and xylose. The structural anal. showed that GLP-1.6 M was a typical sulfated red alga polysaccharide containing the linear backbone of β-(1 → 3)- and α-(1 → 4)-linked galactosyl residues, anhydro-galactose units. In the Lipopolysaccharide-induced IEC-6 cells model, GLP-1.6 M exerted the strongest in vitro anti-inflammatory activity by inhibiting the release and expressions of tumor necrosis factor-α, interleukin-6 and interleukin-1β by 89.93%, 67.82% and 38.06%, resp. Meanwhile, GLP-1.6 M enhanced the intestinal barrier function via up-regulating the expressions of tight junctions and mucin. Therefore, the purified polysaccharide from G. lemaneiformis could be a promising candidate for maintaining intestinal health in the food and pharmaceutical industries.

Electric Literature of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lala, S. Roohan Farooq team published research in Materialia in 2020 | 527-07-1

Quality Control of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Quality Control of 527-07-1, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 527-07-1, name is Sodium Gluconate, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Lala, S. Roohan Farooq;Jyotheender, K. Sai;Gupta, Abhay;Arora, Sweety;Mk, Punith Kumar;Srivastava, Chandan research published 《 Evolution of texture and strain in Sn coating with Cr addition and its effect on the coating corrosion behavior》, the research content is summarized as follows. Sn-Cr coatings with different amounts of Cr (∼1.3-5.5 wt%) were electrodeposited over mild steel substrate. Addition of Cr altered the coating morphol. from less compact and columnar for pristine Sn coating to relatively more compact and globular for Sn-Cr coatings. Incorporation of Cr led to reduction in crystallite sizes, increase in coating strain, and enhancement in Sn crystal growth along {011} and {112} planes. Microstructural characterization revealed the presence of Cr at the grain boundaries and formation of Sn and Sn-Cr grains in the coating microstructure. Corrosion measurements conducted using the Tafel polarization and electrochem. impedance spectroscopy revealed that incorporation of minor amounts of Cr leads to significant enhancement in the corrosion resistance property of the coatings when compared to the pristine Sn coating. When compared to the pristine Sn coating, the Sn-1.3 wt% Cr coating exhibited a 40% reduction in the corrosion c.d. value. The corrosion resistance properties however deteriorated for Sn-Cr coatings with higher Cr content (3.3 and 5.4 wt%). Reduction in the corrosion rate for lower Cr additions was attributed to enhancement in the grain boundary fraction and segregation of Cr to the grain boundaries. Enhancement in the corrosion rate for higher Cr addition was attributed mainly to increase in the coating strain.

Quality Control of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Le, Van Thuan team published research in Materials Letters in 2021 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Formula: C6H11NaO7

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Formula: C6H11NaO7

Le, Van Thuan;Doan, Van Dat;Le, Thi Thanh Nhi;Dao, My Uyen;Vo, Thu-Thao Thi;Do, Ha Huu;Viet, Dinh Quoc;Tran, Vy Anh research published 《 Efficient photocatalytic degradation of crystal violet under natural sunlight using Fe3O4/ZnO nanoparticles embedded carboxylate-rich carbon》, the research content is summarized as follows. A novel photocatalyst of Fe3O4/ZnO nanoparticles embedded carboxylate-rich carbon (Fe3O4/ZnO/CRC) was developed, and its photocatalytic activity was evaluated for the degradation of crystal violet (CV) under natural sunlight. The CV (100 mL, 10 ppm) could be entirely degraded by Fe3O4/ZnO/CRC (75 mg) within 60 min. The ·O2 reactive species had the main contribution to CV degradation The prepared photocatalyst displayed high stability after five cycles. Fe3O4/ZnO/CRC can be used as an effective sunlight-driven photocatalyst for dyes removal due to its simple preparation, high photocatalytic activity, easy separation, and good reusability.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Formula: C6H11NaO7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Le, Van Thuan team published research in Materials Research Bulletin in 2020 | 527-07-1

Synthetic Route of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 527-07-1, formula is C6H11NaO7, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Synthetic Route of 527-07-1

Le, Van Thuan;Doan, Van Dat;Tran, Vy Anh;Le, Hoang Sinh;Tran, Dai Lam;Pham, Thanh Minh;Tran, Thi Huong;Nguyen, Hoai Thuong research published 《 Cu/Fe3O4@carboxylate-rich carbon composite: One-pot synthesis, characterization, adsorption and photo-Fenton catalytic activities》, the research content is summarized as follows. A novel Cu/Fe3O4 nanocomposite supported on carboxylate-rich carbon (Cu/Fe3O4@CRC) was successfully synthesized and characterized. The prepared composite was applied as an adsorbent and photo-Fenton-like catalyst for removal of methylene blue (MB). The results indicate that Cu/Fe3O4@CRC exhibited the highest adsorption and catalytic activities toward MB at the Fe/Cu molar ratio of 1:1 and 1:0.5, resp. The adsorption process was thermodynamically spontaneous, endothermic, and followed well pseudo-first-order kinetic and the Freundlich isotherm models. The maximum adsorption capacity was found to be 240.27 mg g-1 at pH 7, the contact time of 40 min and temperature of 25°C. The photo-Fenton degradation efficiency achieved 97.5% under visible light irradiation for 40 min at optimal conditions of MB concentration of 40 mg L-1, catalyst dosage of 0.2 g L-1, pH 6.0, and H2O2 concentration of 4 mmol L-1. Besides, Cu/Fe3O4@CRC displayed a high removal efficiency and stability after five reaction cycles.

Synthetic Route of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lei, Chunxiao team published research in Journal of Membrane Science in 2020 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Related Products of 527-07-1

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Related Products of 527-07-1

Lei, Chunxiao;Li, Zichao;Gao, Qi;Fu, Rongqiang;Wang, Wei;Li, Qun;Liu, Zhaoming research published 《 Comparative study on the production of gluconic acid by electrodialysis and bipolar membrane electrodialysis: Effects of cell configurations》, the research content is summarized as follows. To produce gluconic acid from Na gluconate, three types of cell configurations of bipolar membrane electrodialysis (BMED) and two types of cell configurations of electrodialysis (ED) were applied and the factors such as the current variation, conversion rate, current efficiency and energy consumption were compared. The BMED2C-C cell configuration (two-chamber BMED with cation exchange membrane) had the better overall performance than the BMED2C-A configuration (two-chamber BMED with anion exchange membrane) and the BMED3C configuration (three-chamber BMED), and the ED3C configuration (three-chamber ED) had the better overall performance than ED4C configuration (four-chamber ED). An industrial production model was set, and the production cost of gluconic acid is 0.25 US$/kg for BMED2C-C and 0.067 $/kg for ED3C, resp. Taking account of the calculated value for NaOH, the cost of BMED2C-C will be 0.104 $/kg, which was less than the one of traditional production Though ED3C has the lowest production cost, it produces the byproduct Na sulfate which needs to be handled further.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Related Products of 527-07-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kikuchi, Masuzu team published research in Scientific Reports in 2021 | 527-07-1

COA of Formula: C6H11NaO7, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , COA of Formula: C6H11NaO7

Kikuchi, Masuzu;Kojima, Keiichi;Nakao, Shin;Yoshizawa, Susumu;Kawanishi, Shiho;Shibukawa, Atsushi;Kikukawa, Takashi;Sudo, Yuki research published 《 Functional expression of the eukaryotic proton pump rhodopsin OmR2 in Escherichia coli and its photochemical characterization》, the research content is summarized as follows. Microbial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons outwardly across the membrane and are indispensable for light-energy conversion in microorganisms. Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli expression system because that enables the rapid production of large amounts of recombinant proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (O. marina rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated counterion (pKa = 3.0) of the protonated Schiff base and (3) a rapid photocycle through several distinct photointermediates. Those features are similar to those of known eukaryotic proton pump rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for understanding and utilizing eukaryotic rhodopsins.

COA of Formula: C6H11NaO7, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kumar, Abhinash team published research in Archives of Microbiology in 2021 | 527-07-1

Formula: C6H11NaO7, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Formula: C6H11NaO7

Kumar, Abhinash;Jha, Manindra Nath;Singh, Devendra;Pathak, Devashish;Rajawat, Mahendra Vikram Singh research published 《 Prospecting catabolic diversity of microbial strains for developing microbial consortia and their synergistic effect on Lentil (Lensesculenta) growth, yield and iron biofortification》, the research content is summarized as follows. Carbon profiling of heterotrophic microbial inoculants is worthwhile strategy for formulating consortium-based biofertilizers. Consortium-based biofertilizers are better than single strain-based biofertilizers for sustaining agricultural productivity and enhancing micronutrient concentration in grains. Currently, we investigated catabolic diversity among microbes using different carbon sources and certain enzyme activities. A field experiment was also carried to evaluate the synergistic effect of selected lentil Rhizobia and plant growth promoting rhizobacteria strains on lentil growth, yield, nitrogen fixation, and Fe-content in seeds. On the basis of carbon profiling Bacillus sp.RB1 and Pseudomonas sp.RP1 were selected for synergistic study with lentil Rhizobium-Rhizobium leguminosarum subsp. viciae RR1. Co-inoculation of Rhizobium with Bacillus sp.RB1 and Pseudomonas sp.RP1 significantly enhanced the plant height, number of pods per plant, seed yield, number of nodules per plant, nitrogenase activity and Fe biofortification in seed over the single Rhizobium inoculation or dual combination of Rhizobium + RB1 or RP1. The response of single Rhizobium inoculation or co-inoculation of Rhizobium with RB1 and/or RP1 at 50% RDF was almost similar or higher than full dose of recommended N:P:K with respect to lentil yield and Fe biofortification in seed. This deciphered grouping of microbial strains for formulation of microbial consortia-based biofertilizers and revealed the promise of consortium of Rhizobium and plant growth promoting rhizobacteria in improving the biol. yield and enhancing the Fe content of lentil seed.

Formula: C6H11NaO7, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kurenkova, Anna Y. team published research in Catalysts in 2021 | 527-07-1

Synthetic Route of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Synthetic Route of 527-07-1

Kurenkova, Anna Y.;Medvedeva, Tatiana B.;Gromov, Nikolay V.;Bukhtiyarov, Andrey V.;Gerasimov, Evgeny Y.;Cherepanova, Svetlana V.;Kozlova, Ekaterina A. research published 《 Sustainable hydrogen production from starch aqueous suspensions over a cadmium zinc sulfur-based photocatalyst》, the research content is summarized as follows. We explored the photoreforming of rice and corn starch with simultaneous hydrogen production over a Cd0.7Zn0.3S-based photocatalyst under visible light irradiation The photocatalyst was characterized by UV-vis diffuse reflectance spectroscopy, X-ray diffraction, and XPS. The influence of starch pretreatment conditions, such as hydrolysis temperature and alk. concentration, on the reaction rate was studied. The maximum rate of H2 evolution was 730μmol·h-1·g-1, with AQE = 1.8% at 450 nm, in the solution obtained after starch hydrolysis in 5 M NaOH at 70°C. The composition of the aqueous phase of the suspension before and after the photocatalytic reaction was studied via high-performance liquid chromatog., and such products as glucose and sodium gluconate, acetate, formate, glycolate, and lactate were found after the photocatalytic reaction.

Synthetic Route of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jin, Zelong team published research in Journal of Alloys and Compounds in 2020 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Recommanded Product: Sodium Gluconate

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Recommanded Product: Sodium Gluconate

Jin, Zelong;Cai, Changrun;Hashimoto, Teruo;Yuan, Yudie;Kang, Dae Hoon;Hunter, John;Zhou, Xiaorong research published 《 Alkaline etching and desmutting of aluminium alloy: The behaviour of Mg2Si particles》, the research content is summarized as follows. In the present study, the behavior of coarse constituent Mg2Si particles during alk. etching and desmutting of AA5052 aluminum alloy is investigated by monitoring the morphol. and compositional evolution of the particles using quasi in-situ electron microscopy. An etching product film, consisting of Mg(OH)2, and SiO2·xH2O sublayers, is formed on particle surface during alk. etching, which renders the particles inert. During desmutting in nitric acid, the etching product film is dissolved and dealloying of Mg occurs rapidly, resulting in Si-rich remnant. However, the population d. of Si-rich remnant on alloy surface is similar to that of the initial Mg2Si particles.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Recommanded Product: Sodium Gluconate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts