Perovic, Milena team published research in ChemCatChem in 2021 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Name: Sodium Gluconate

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 527-07-1, formula is C6H11NaO7, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Name: Sodium Gluconate

Perovic, Milena;Zeininger, Lukas;Oschatz, Martin research published 《 Immobilization of Gold-on-Carbon Catalysts Onto Perfluorocarbon Emulsion Droplets to Promote Oxygen Delivery in Aqueous Phase D-Glucose Oxidation》, the research content is summarized as follows. The catalytic activity of metal nanoparticles (NPs) supported on porous supports can be controlled by various factors, such as NPs size, shape, or dispersivity, as well as their interaction with the support or the properties of the support material itself. However, these intrinsic properties are not solely responsible for the catalytic behavior of the overall reaction system, as the local environment and surface coverage of the catalyst with reactants, products, intermediates and other invloved species often play a crucial role in catalytic processes as well. Their contribution can be particularly critical in liquid-phase reactions with gaseous reactants that often suffer from low solubiltiy. One example is D-glucose oxidation with mol. oxygen over gold nanoparticles supported on porous carbons. The possibility to promote oxygen delivery in such aqueous phase oxidation reactions via the immobilization of heterogenous catalysts onto the interface of perfluorocarbon emulsion droplets is reported here. Gold-on-carbon catalyst particles can stabilize perfluorocarbon droplets in the aqueous phase and the local concentration of the oxidant in the surroundings of the gold nanoparticles accelerates the rate-limiting step of the reaction. Consequently, the reaction rate of a system with the optimal volume fraction of fluorocarbon is higher than a reference emulsion system without fluorocarbon, and the effect is observed even without addnl. oxygen supply.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Name: Sodium Gluconate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Pinnaka, Anil Kumar team published research in Antonie van Leeuwenhoek in 2021 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Electric Literature of 527-07-1

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Electric Literature of 527-07-1

Pinnaka, Anil Kumar;Tanuku, Naga Radha Srinivas;Gupta, Vasundhara;Vasudeva, Gunjan;Pydi, Sudharani;Kashyap, Nishant;Behera, Swarnaprava;Ganta, Sampath Kumar research published 《 Marinobacterium alkalitolerans sp. nov., with nitrate reductase and urease activity isolated from green algal mat collected from a solar saltern》, the research content is summarized as follows. A novel Gram-staining-neg., rod-shaped, 0.6-0.8 μm wide and 2.0-3.0 μm in length, motile bacterium designated strain AK62T, was isolated from the green algal mat collected from saltpan, Kakinada, Andhra Pradesh, India. Colonies on ZMA were circular, off-white, shiny, moist, translucent, 1-2 mm in diameter, flat, with an entire margin. The major fatty acids include C16:0, C18:1ω7c, and summed feature 3 (C16:1ω7c and/or C16:1ω6c and/or iso-C14:0 3-OH). Polar lipids include diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid, three unidentified phospholipids, and one unidentified lipid. Polyamine includes Spermidine. The DNA G + C content of the strain AK62T was 58.8 mol%. Phylogenetic anal. based on 16S rRNA gene sequence revealed that strain AK62T was closely related to the type strains Marinobacterium sediminicola, Marinobacterium coralli and Marinobacterium stanieri with a pair-wise sequence similarity of 96.9, 96.6 and 96.6%, resp., forming a distinct branch within the genus Marinobacterium and clustered with M. stanieri, M. sediminicola, M. coralli and M. maritimum cluster. Strain AK62T shares average nucleotide identity (ANIb, based on BLAST) of 78.44, 76.69, and 76.95% with M. sediminicola CGMCC 1.7287T, M. stanieri DSM 7027T, and Marinobacterium halophilum Mano11T resp. Based on the observed phenotypic, chemotaxonomic characteristics, and phylogenetic anal., strain AK62T is described in this study as a novel species in the genus Marinobacterium, for which the name Marinobacterium alkalitolerans sp. nov. is proposed. The type strain of M. alkalitolerans is AK62T (= MTCC 12102T = JCM 31159T = KCTC 52667T). The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene and genome sequence of type strain AK62T are LN558833 and JACVEW000000000, resp.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Electric Literature of 527-07-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Qu, Jun-e team published research in Materials and Corrosion in | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Reference of 527-07-1

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 527-07-1, formula is C6H11NaO7, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Reference of 527-07-1

Qu, Jun-e;Luo, Hongqin;Liu, Zhanxiang;Wang, Hairen;Chen, Yuwei;Yang, Lixia research published 《 Effect of sodium-zinc EDTA and sodium gluconate as electrolyte additives on corrosion and discharge behavior of Mg as anode for air battery》, the research content is summarized as follows. The corrosion inhibiting performance of EDTA-ZnNa2 and C6H11NaO7 for pure magnesium in a 3.5 wt% NaCl electrolyte was investigated through electrochem. tests and surface microanal. And their effect on discharge behavior of Mg anode used for air battery was evaluated through constant-current discharging tests. The inhibition performance varied with different additive concentrations and the maximum inhibition efficiency values were obtained as 87.11% and 77.70% by using 0.005 M EDTA-ZnNa2 and 0.01 M C6H11NaO7, resp. Both the presence of 0.005 M EDTA-ZnNa2 and 0.01 M C6H11NaO7 in electrolyte improved the battery performance, especially under a smaller discharging current. The discharge platform time was extended from 15.66 to 22.57 h and 20.04 h by adding EDTA-ZnNa2 and C6H11NaO7 at discharging c.d. of 2 mA cm-2 resp., accompanied by a negligible battery voltage drop of about 20 mV. In the case of EDTA-ZnNa2, zinc hydroxide formed by the dissociated zinc ions cooperated with magnesium hydroxide and organic adsorption film for corrosion inhibition. Therefore, by using it a more pronounced discharge performance was achieved than C6H11NaO7.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Reference of 527-07-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Otani, Kyohei team published research in Materials Transactions in 2021 | 527-07-1

Synthetic Route of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Synthetic Route of 527-07-1, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 527-07-1, name is Sodium Gluconate, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Otani, Kyohei;Sakairi, Masatoshi research published 《 Synergistic effects of metal cations and sodium gluconate on the inhibition of freshwater corrosion of mild steel》, the research content is summarized as follows. The synergistic effects of metal cations in a solution on the ability of sodium gluconate to inhibit the corrosion of mild steel were investigated by immersion and electrochem. tests. The effects of metal cations on the inhibition ability of sodium gluconate was investigated quant., with particular focus on the parameter Y, which represents the “corrosion inhibitory effect of cations” The results of the immersion and electrochem. tests showed that the inhibition ability of sodium gluconate improved with increasing Y value of the metal cations in model freshwater. The electrochem. and surface analyses indicated that gluconate ligands and large-Y metal cations formed a protective layer with few defects on the mild steel.

Synthetic Route of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Pan, Xianmei team published research in British Journal of Pharmacology in 2022 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Application In Synthesis of 527-07-1

In general, the hydroxyl group makes alcohols polar. 527-07-1, formula is C6H11NaO7, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Application In Synthesis of 527-07-1

Pan, Xianmei;Wan, Rentao;Wang, Yuman;Liu, Silin;He, Yu;Deng, Bo;Luo, Shangfei;Chen, Yuan;Wen, Lizhen;Hong, Tianying;Xu, Han;Bian, Yifei;Xia, Mingfeng;Li, Jing research published 《 Inhibition of chemically and mechanically activated Piezo1 channels as a mechanism for ameliorating atherosclerosis with salvianolic acid B》, the research content is summarized as follows. Salvianolic acid B (SalB) is effective for treating cardiovascular diseases. However, the mol. mechanisms underlying its therapeutic effects remain unclear. Mechanosensitive Piezo1 channels play important roles in vascular biol., although their pharmacol. properties are poorly defined. Here, we aimed to identify novel Piezo1 inhibitors and gain insights into their mechanisms of action. Intracellular Ca2+ ions were measured in HUVECs, murine liver endothelial cells (MLECs), THP-1 and RAW264.7 cell lines and bone marrow-derived macrophages (BMDMs). Isometric tensions in mouse thoracic aorta were recorded. Shear-stress assays with HUVECs were conducted. Patch-clamp recordings with mech. stimulation were performed with HUVECs in whole-cell mode. Foam cell formation was induced by treating BMDMs with oxidised LDL (oxLDL). Atherosclerotic plaque assays were performed with Ldlr-/- and Piezo1 genetically depleted mice on a high-fat diet. Salvianolic acid B inhibited Yoda1-induced Ca2+ influx in HUVECs and MLECs. Similar results were observed in macrophage cell lines and BMDMs. Furthermore, we demonstrated that salvianolic acid B inhibited Yoda1- and mech. activated currents. Salvianolic acid B suppressed Yoda1-induced aortic ring relaxation and inhibited HUVECs alignment in the direction of shear stress. Addnl., Yoda1 enhanced the formation of foam cells, which was reversed by salvianolic acid B. Salvianolic acid B also inhibited formation of atherosclerotic plaques and was insensitive to Piezo1 genetic depletion. Our study provides novel mechanistic insights into the inhibitory role of salvianolic acid B against Piezo1 channels and improves our understanding of salvianolic acid B in preventing atherosclerotic lesions.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Application In Synthesis of 527-07-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Park, Seon Mi team published research in Reproductive Toxicology in 2021 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Category: alcohols-buliding-blocks

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 527-07-1, formula is C6H11NaO7, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Category: alcohols-buliding-blocks

Park, Seon Mi;Jo, Na Rae;Lee, Bonn;Jung, Eui-Man;Lee, Sung Duck;Jeung, Eui-Bae research published 《 Establishment of a developmental neurotoxicity test by Sox1-GFP mouse embryonic stem cells》, the research content is summarized as follows. Developmental toxicity tests have been generated by applying the embryonic stem cell tests at the European Center for the Validation of Alternative Methods, or by using the embryoid body test in our laboratory This study was undertaken to explore novel developmental neurotoxicity (DNT) assay, using a Sox1-GFP cell line (mouse embryonic stem cells with an endogenous Sox1-GFP reporter). The expression of Sox1, a marker for neuroepithelial cells, is detected by green fluorescence, and the fluorescence intensity is a critical factor for achieving neuronal differentiation. Sox1-GFP cells cultured for 24 h were exposed to eleven neurotoxicants and four non-neurotoxicants. CCK-8 assays were performed to determine IC50 values after 48 h of chem. treatment. The fluorescence intensity of GFP was measured 4 days after treating the cells, and it was observed to decrease after exposure to neurotoxicants at higher concentrations, thereby indicating that the neuronal differentiation of Sox1-GFP cells is inhibited by the chems. Taken together, the results obtained in this study provide a model for DNT using embryonic stem cells, which may be applied to evaluate the toxicity of new chems. or new drug candidates.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Penaloza, Isabel M. team published research in Energy & Fuels in 2021 | 527-07-1

Reference of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 527-07-1, formula is C6H11NaO7, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Reference of 527-07-1

Penaloza, Isabel M.;Chauhan, Garima;de Klerk, Arno research published 《 Desalting Behavior of Bitumen》, the research content is summarized as follows. The salt content of crude oil that enters a petroleum refinery should be kept to a min. to limit corrosion and fouling issues associated with salts. Desalting is usually performed as the 1st step in refining. Desalting of strong emulsion-forming crude oils, such as oil sand-derived bitumen, is more challenging. This work studied the desalting behavior of oil sands bitumen to determine whether n salts were present mainly in emulsified connate H2O, or whether salts were also present outside of emulsified H2O. A 4 step desalting procedure was performed and the removal of ionic species in the aqueous phase was monitored, with emphasis placed on anion quantification. With consecutive washing steps, the anion and cation concentrations did not always decrease monotonically and these observations were supported by conductivity measurements. The ratio of anions, notably carbonate/sulfate and chloride/sulfate, did not remain constant either. With repeated H2O washing, the pH of the aqueous phase became more acidic. The pH from the 1st washing step was 7.3 and with subsequent washing steps, the pH decreased, reaching ≥4.7 in 1 of the experiments The desalting behavior was therefore not consistent with a description of bitumen that retained salts only in emulsified connate H2O. At least some salts had to be present as solids in the bitumen to explain variability in anion ratios. It was also speculated that some salts could be present in ionic or coordination interactions with bitumen.

Reference of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Peng, Tian-Yu team published research in Angewandte Chemie, International Edition in 2022 | 527-07-1

Application In Synthesis of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Application In Synthesis of 527-07-1, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 527-07-1, name is Sodium Gluconate, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Peng, Tian-Yu;Xu, Zhe-Yuan;Zhang, Feng-Lian;Li, Bin;Xu, Wen-Ping;Fu, Yao;Wang, Yi-Feng research published 《 Dehydroxylative Alkylation of α-Hydroxy Carboxylic Acids Derivatives via a Spin-Center Shift》, the research content is summarized as follows. A strategically distinct dehydroxylative alkylation reaction of α-hydroxy carboxylic acid derivatives I (Ar1 = 4-NCC6H4, 4-EtO2CC6H4, 2-pyridyl, etc.) with alkenes is developed. The reaction starts with the attack of a 4-dimethylaminopyridine (DMAP)-boryl radical to the carbonyl oxygen atom, followed by a spin-center shift (SCS) to trigger the C-O bond scission. The resulting α-carbonyl radicals couple with a wide range of alkenes to furnish various alkylated products II (Ar1 = 4-NCC6H4, 4-EtO2CC6H4, 2-pyridyl, etc.; R = n-Bu, Ph, 3-MeC6H4, etc.) . This strategy allows for the efficient conversion of a wide array of α-hydroxy amides and esters derived from several biomass mols. and natural products to value-added compounds Exptl. and computational studies verified the reaction mechanism.

Application In Synthesis of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Nakamura, Tatsuya team published research in Journal of Oleo Science in 2022 | 527-07-1

Computed Properties of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 527-07-1, formula is C6H11NaO7, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Computed Properties of 527-07-1

Nakamura, Tatsuya;Tsukizawa, Toru;Oya, Masaru research published 《 Combined use of reducing agents and biodegradable chelating agent for iron rust removal》, the research content is summarized as follows. Since many of the current chems. used to remove iron rust are hazardous to the environment and human health, the combined use of a reducing agent and a biodegradable chelating agent has been suggested as an environmental friendly and highly safe alternative. In the present work, the compatibility of the newly devised cleaning test with a model iron rust stain was confirmed by X-ray diffraction and SEM. Addnl., the cleaning efficiency of the method was evaluated by X-ray fluorescence. The cleaning mechanism and the synergistic effect of the reducing agent and the chelating agent was investigated using the phenanthroline absorption measurement method, and the results revealed that the reduced iron ions were dissolved by the chelating agent. The cleaning test proved that tetrasodium 3-hydroxy-2,2-iminodisuccinate (HIDS) is a promising biodegradable chelating agent as an alternative to EDTA (EDTA) for removing iron rust. It was also confirmed that the type of reducing agent used determines the pH at which detergency is enhanced. The detergency of the combination of the reducing agent and the biodegradable chelating agent was equal to or higher than the detergency of the acid agent, and thus, it was concluded that the proposed method has a great potential for com. use.

Computed Properties of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Oberg, Craig team published research in Journal of Dairy Science in 2021 | 527-07-1

Recommanded Product: Sodium Gluconate, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 527-07-1, formula is C6H11NaO7, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Recommanded Product: Sodium Gluconate

Oberg, Craig;Sorensen, Kate;Oberg, Taylor;Young, Serena;Domek, Matthew;Culumber, Michele;McMahon, Donald research published 《 Gluconate metabolism and gas production by Paucilactobacillus wasatchensis WDC04》, the research content is summarized as follows. Paucilactobacillus wasatchensis, a nonstarter lactic acid bacteria, can cause late gas production and splits and cracks in aging cheese when it metabolizes 6-carbon substrates, particularly galactose, to a 5-carbon sugar, resulting in the release of CO2. Previous studies have not explained late gas production in aging cheese when no galactose is present. Based on the genome sequence of Pa. wasatchensis WDC04, genes for potential metabolic pathways were mapped using knowledgebase predictive biol. software. This metabolic modeling predicted Pa. wasatchensis WDC04 could metabolize gluconate. Gluconate contains 6 carbons, and Pa. wasatchensis WDC04 contains genes to convert it to 6-P-gluconate and then to ribulose-5-P by using 6-phosphogluconate dehydrogenase in a decarboxylating step, producing CO2 during its metabolism The goal of this study was to determine if sodium gluconate, often added to cheese to reduce calcium lactate crystal formation, could be metabolized by Pa. wasatchensis WDC04, resulting in gas production Carbohydrate-restricted DeMan, Rogosa, and Sharpe broth was mixed with varying ratios of ribose, sodium gluconate, or D-galactose (total added substrate content of 1% wt/vol). Oxyrase (Oxyrase Inc.; 1.8% vol/vol) was also used to mimic the anaerobic environment of cheese aging in selected tubes. Tubes were inoculated with a 4-d culture of Pa. wasatchensis WDCO4, and results were recorded over 8 d. When inoculated into carbohydrate-restricted DeMan, Rogosa, and Sharpe broth containing only sodium gluconate as the added substrate, Pa. wasatchensis WDC04 grew, confirming gluconate utilization. Of the 10 ratios used, Pa. wasatchensis WDC04 produced gas in 6 scenarios, with the most gas production resulting from the ratio of 100% sodium gluconate with no added ribose or galactose. It was confirmed that obligately heterofermentative nonstarter lactobacilli such as Pa. wasatchensis WDC04 can utilize sodium gluconate to produce CO2 gas. Addition of sodium gluconate to cheese thus becomes another risk factor for unwanted gas production and formation of slits and cracks.

Recommanded Product: Sodium Gluconate, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts