Zhang, Mengxue team published research in Biotechnology Letters in 2021 | 527-07-1

Product Details of C6H11NaO7, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 527-07-1, formula is C6H11NaO7, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Product Details of C6H11NaO7

Zhang, Mengxue;Zhao, Xingcong;Chen, Xi;Li, Mingyue;Wang, Xuedong research published 《 Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway》, the research content is summarized as follows. The production of riboflavin with Bacillus subtilis, is an established process, however it is yet to be fully optimized. The aim of this study was to explore how riboflavin yields can be improved via in vitro and in vivo metabolic engineering modification of the pentose phosphate pathway (PPP). In vitro, glucose was replaced with sodium gluconate to enhance PPP. Flask tests showed that the riboflavin titer increased from 0.64 to 0.87 g/L. The results revealed that the direct use of sodium gluconate could benefit riboflavin production In vivo, gntP (encoding gluconate permease) was overexpressed to improve sodium gluconate uptake. The riboflavin titer reached 1.00 g/L with the mutant B. subtilis RF01. Ultimately, the fermentation verification of the engineered strain was carried out in a 7-L fermenter, with the increased riboflavin titer validating this approach. The combination of metabolic engineering modifications in vitro and in vivo was confirmed to promote riboflavin production efficiently by increasing PPP and has great potential for industrial application. This work is aimed to explore how to improve the riboflavin yield by the rational renovation of the pentose phosphate pathway (PPP). In vitro, metabolic engineering mainly uses sodium gluconate as a carbon source instead of glucose, and in vivo, metabolic engineering mainly includes the overexpression of sodium gluconate utility-related genes. The effect of sodium gluconate on cell growth, riboflavin production was investigated in the flasks and fermenter scale.

Product Details of C6H11NaO7, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhang, Shu-wen team published research in Huagong Sheji Tongxun in 2021 | 527-07-1

Computed Properties of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Computed Properties of 527-07-1, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 527-07-1, name is Sodium Gluconate, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Zhang, Shu-wen research published 《 Research on reagent applied to back spray of salty wastewater quench tower》, the research content is summarized as follows. With the improvement of national environmental protection requirements, the standards for waste water disposal are becoming more and more stringent, especially for the disposal of salty waste water. More and more local governments have introduced relevant policies to ensure zero discharge of waste water. This article adopts the treatment of salty waste water and solid waste. Combining the field of incineration and backspray, conducted field test and research on related agents. Through the test of different polycarboxylate agents, a single agent and a combination of some two agents were obtained. The incineration and recycling of salty wastewater in solid waste When used in spray, the effect is not ideal. Because each agent has different concentrations of different ions, the effect is not good, so other combinations need to be adjusted.

Computed Properties of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ye, Qianqian team published research in Construction and Building Materials in 2021 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, SDS of cas: 527-07-1

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , SDS of cas: 527-07-1

Ye, Qianqian;Han, Yufei;Liu, Tao;Bai, Yue;Chen, Yingjian;Li, Jianzhang;Shi, Sheldon Q. research published 《 Magnesium oxychloride cement reinforced via D-gluconic acid sodium salt for slow-curing, with enhanced compressive strength and water resistance》, the research content is summarized as follows. Magnesium oxychloride cement (MOC) has the advantages of low-carbon emission, reducing the magnesium chloride waste, and lack of humid curing. However, the MOC has not been widely utilized yet due to the poor water resistance and the short setting time at high ambient temperatures Herein, a simple and low-cost approach was developed through incorporating D-gluconic acid sodium salt into the MOC. After adding 1.4 wt% D-gluconic acid sodium salt, the initial and final setting time were extended to 257 min and 421 min, resp., compared to that of unmodified MOC (92 min and 192 min). Based on the XPS anal., the rod-like phase 5 (5 Mg(OH)2·MgCl2·8H2O) in the MOC was converted into the gel-like phase 5 through the chelation between D-gluconic acid sodium salt and phase 5. The gel-like structures were evidently observed in the MOC pores (especially after immersing in water), and they efficiently hinder the moisture penetrating into internal structure of the MOC. Subsequently, the softening coefficient was enhanced from 0.38 to 0.91 when the D-gluconic acid sodium salt content was increased from 0% to 1.4%. In comparison to the unmodified MOC, 0.6 wt% of D-gluconic acid sodium salt could enhance the compressive strength by 24.6% after curing for 7 days. When the D-gluconic acid sodium salt content increased to over 0.6%, the compressive strength decreased. Meanwhile, the anal. of phase components proved that the phase 5 content of the modified MOC specimens remained unchanged or even increased after immersing into the water, establishing protection of the gel-like structure on the phase 5.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, SDS of cas: 527-07-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xu, Yanqun team published research in Additive Manufacturing in 2021 | 527-07-1

HPLC of Formula: 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , HPLC of Formula: 527-07-1

Xu, Yanqun;Yuan, Qiang;Li, Zemin;Shi, Caijun;Wu, Qihong;Huang, Yanlin research published 《 Correlation of interlayer properties and rheological behaviors of 3DPC with various printing time intervals》, the research content is summarized as follows. The weak interlayer of 3D printing cementitious materials (3DPC) remains a critical challenge for 3D printing technol., which can print fresh materials layer by layer based on a pre-defined computer model. In this paper, the effects of the printing time interval on rheol. behavior, shear bond strength, penetration resistance to chloride and CO2 of 3DPC interlayers were investigated, and the correlations among them were analyzed based on the gray relational anal.(GRA) method, a statistical method for measuring correlations between factors by their trends. The results showed that the carbonation resistance is the most sensitive to the printing time interval, followed by chloride penetration and shear bond strength. The rheol. behaviors of 3DPC had weaker correlation with the shear bond strength when comparing with the interlayer surface moisture. Addnl., the porosity was more related to the shear bond strength than the number of pores. Furthermore, a quant. relationship between shear bond strength and printing time interval was established.

HPLC of Formula: 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yan, Yu team published research in Construction and Building Materials in 2021 | 527-07-1

Formula: C6H11NaO7, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 527-07-1, formula is C6H11NaO7, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Formula: C6H11NaO7

Yan, Yu;Wang, Rui;Wang, Wenbin;Yu, Cheng;Liu, Jiaping research published 《 Effect of starch-based admixtures on the exothermic process of cement hydration》, the research content is summarized as follows. The effect of three types of starch-based admixtures, namely glucose and its derivatives, soluble dextrin with various d.p. and a novel starch-based temperature rise inhibitor (TRI) with various degree of starch acidification on the exothermic process of cement hydration has been investigated through the calorimetry measurements. Except delaying the appearance of the main hydration peak as the retarding effect, starch-based admixtures can also reduce the heat flow during the acceleration period and induce a lower maximum heat flow as the depressing effect. Together with the dissolution and adsorption results, it can be concluded that the relationship between these two effects is determined by the action time of mol. in the cement paste. The soluble admixtures with fairly short action time focus mainly on disturbing the cement hydration during the induction period but have minor effect on depressing the main hydration peak. TRI with limited dissolution can persistently inhibit the cement hydration over a longer period of action time, inducing negligible retarding effect but apparent depressing effect.

Formula: C6H11NaO7, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xi, Yuming team published research in ACS Omega in 2022 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Electric Literature of 527-07-1

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Electric Literature of 527-07-1

Xi, Yuming;Lu, Yangcheng research published 《 How Does Ion Exchange Construct Binary Hexacyanoferrate? A Case Study》, the research content is summarized as follows. In this work, using electrochem. active Fe as an ion-exchange element (attack side) and the NaxMnFe(CN)6 slurry with high solid content (MnHCF) as a template (defensive side), a series of binary hexacyanoferrate are prepared via a simple Mn/Fe ion-exchange process, in which NaxFeFe(CN)6 (FeHCF) and solid solution Nax(FeMn)Fe(CN)6 are concentrated on the shell and the core, resp. The proportion of the two structures are mainly controlled by the competition between the ion-exchange rate in the bulk material and dissolution-reprecipitation rate. Slowing down the attacking rate, such as the use of chelating agent complexed with the attacker Fe, is advantageous to form a thermodynamically metastable state with homogeneous distribution of elements since the diffusion of Fe2+ in the solid MnHCF is relatively fast. The shell FeHCF could be adjusted by the dissolution-reprecipitation rate, which is driven by the solubility difference. Adding the chelating agent in the defensive side will promote the dissolution of MnHCF and reprecipitation of FeHCF on the surface. Meanwhile, with the increase of Fe sources, the thickness of shell FeHCF increases, and correspondingly the content of solid solution decreased due to FeHCF is more stable than solid solution in thermodn. Finally, such a design principle in this case study could also be generalized to other ion-exchange process. Considering the difference of two components in solubility, the larger difference can make the core/shell structure more clear due to the enhancement of dissolution-reprecipitation route.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Electric Literature of 527-07-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xia, Mingchen team published research in Chemosphere in 2022 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Electric Literature of 527-07-1

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Electric Literature of 527-07-1

Xia, Mingchen;Zhou, Han;Amanze, Charles;Hu, Lan;Shen, Li;Yu, Runlan;Liu, Yuandong;Chen, Miao;Li, Jiaokun;Wu, Xueling;Qiu, Guanzhou;Zeng, Weimin research published 《 A novel polysaccharides-based bioflocculant produced by Bacillus subtilis ZHX3 and its application in the treatment of multiple pollutants》, the research content is summarized as follows. A high bioflocculant-producing bacterial strain was identified and named Bacillus subtilis ZHX3. Single-factor experiments suggested that 10 g/L starch and 5 g/L yeast extract were optimal for strain ZHX3 to produce bioflocculant MBF-ZHX3. The maximum flocculating rate reached 95.5%, and 3.14 g/L product was extracted after 3 days of cultivation. MBF-ZHX3 was mainly composed of polysaccharides (77.2%) and protein (14.8%). The polysaccharides contained 28.9% uronic acid and 3.7% amino sugar. Rhamnose, arabinose, galactose, glucose, mannose, and galacturonic acid in a molar ratio of 0.35:1.83:3.09:12.66:0.46:3.81 were detected. MBF-ZHX3 had a mol. weight of 10,028 Da and contained abundant groups (-OH, C=O, >P=O, C-O-C) contributing to flocculation. Adsorption and bridging was considered as the main flocculation mechanism. MBF-ZHX3 was more effective in decolorizing dyes, removing heavy metals and flotation reagents compared to polyacrylamide. The results implied that MBF-ZHX3 has the potential to substitute polyacrylamide in wastewater treatment because of its excellent biol. and environmental benefits.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Electric Literature of 527-07-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xia, Mingchen team published research in Journal of Polymers and the Environment in 2022 | 527-07-1

Application of C6H11NaO7, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Application of C6H11NaO7, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 527-07-1, name is Sodium Gluconate, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Xia, Mingchen;Zhang, Shishi;Shen, Li;Yu, Runlan;Liu, Yuandong;Li, Jiaokun;Wu, Xueling;Chen, Miao;Qiu, Guanzhou;Zeng, Weimin research published 《 Optimization and Characterization of an Antioxidant Exopolysaccharide Produced by Cupriavidus pauculus 1490》, the research content is summarized as follows. In the present study, exopolysaccharides (EPS) production by Cupriavidus pauculus 1490 was optimized by response surface methodol. The results showed that sodium gluconate (4.15 g/L), NH4Cl (0.52 g/L), and Na2HPO4·12H2O (0.04 g/L) were the optimal medium components and concentrations The actual EPS yield of 293.2 m g/L in the optimized medium was in close agreement with the predicted value of 283.35 m g/L. Anal. of fourier transform IR spectroscopy indicated the EPS contained abundant functional groups, such as -OH, C=O and C-O-C, and all of them were attributed to the characteristics of polysaccharides. Mannose, glucuronic acid, glucose and xylose were detected as the main monosaccharide composition of EPS. Rheol. anal. suggested that the rheogram of EPS has similar trend with Xanthan and presented the property of non-Newtonian fluid. Moreover, the addition of NaCl and KCl would partly weaken the shear stress of EPS. Three in vitro assays were conducted to evaluate the antioxidant potential of the EPS. Results demonstrated that the EPS possessed scavenging capacity on hydroxyl radical, DPPH radical and superoxide anion radical in a dose-dependent way. As indicated by above results, the EPS isolated from C. pauculus 1490 might serve as a potential antioxidant agent to be applied in nutraceutical and pharmaceutical industries.

Application of C6H11NaO7, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xiao, Jianzhuang team published research in Journal of Cleaner Production in 2021 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Reference of 527-07-1

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 527-07-1, formula is C6H11NaO7, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Reference of 527-07-1

Xiao, Jianzhuang;Zou, Shuai;Ding, Tao;Duan, Zhenhua;Liu, Qiong research published 《 Fiber-reinforced mortar with 100% recycled fine aggregates: A cleaner perspective on 3D printing》, the research content is summarized as follows. The huge labour-consumption, construction and demolition (C&D) waste pollution, and shortage of river sand have become increasingly serious problems facing the construction industry. Therefore, the possibility of fully replacing natural fine aggregates (NFA) with recycled fine aggregates (RFA) for fiber-reinforced 3D mortar printing (3DMP) was carefully evaluated by Digital Image Correlation (DIC) technique, mech. testing, and microscopic anal. in this study. The results show that the 100% replacement of RFA had very limited impact on the failure pattern of the 3D printed (3DP) specimen, while the addition of 1% polyethylene (PE) fibers would change the failure pattern of specimens from brittle to ductile. This study also defines the parameter of anisotropic degree to reflect the anisotropy. It is found that the anisotropic degree of 3DP specimens was different under various loading conditions and obviously affected by both RFA and fibers. The microscopic anal. indicated that the effect of RFA on the 3DP specimens was mainly due to the porous structure and the existence of initial micro-cracks, while the effect of fibers was mainly due to the interfacial bond between PE fibers and matrix. This study also found that after reinforcing with appropriate fibers, the 3DP mortar mixed with 100% RFA has higher mech. properties and better deformation ability than the fiber-free mortar with 100% NFA. It is believed that the 100% replacement of RFA is applicable in 3DMP, which will bring significant benefits to the cleaner production and sustainable development of the construction industry.

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Reference of 527-07-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Yuxin team published research in Materials & Design in 2021 | 527-07-1

Category: alcohols-buliding-blocks, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Category: alcohols-buliding-blocks

Wang, Yuxin;Guan, Linlin;He, Zhen;Zhang, Shengping;Singh, Harshpreet;Hayat, Muhammad Dilawer;Yao, Caizhen research published 《 Influence of pretreatments on physicochemical properties of Ni-P coatings electrodeposited on aluminum alloy》, the research content is summarized as follows. Aluminum often requires protective coatings to prevent corrosion. The aluminum alloy substrate usually needs pretreatment to minimize, stabilize or convert the surface oxide in order to achieve adequate coating adhesion. The electrodeposited Ni-P coating is a promising candidate as a protective coating due to its easy fabrication and excellent performance. This study comprehensively investigates the pretreatment of zincating and anodizing on 6061 aluminum alloy, and systematically discusses their influence on the electrodeposited Ni-P coatings. The crystal structure and elemental composition were investigated for interlayers and Ni-P coatings subsequently, while morphologies of the coating surface and cross-section were also determined The results revealed similar phase composition for differently pretreated Ni-P coatings, while distinct nodule featured morphol. was observed for anodized Ni-P coating. It was found that anodized Ni-P coatings had the best performance due to its superior coating adhesion, wear-resistance, and corrosion resistance. In contrast, severe wear damage was occurred to zincated Ni-P coatings due to its inferior microstructure and weak zinc interlayer. Lastly, the influence of anodizing pretreatment on the coating microstructure is discussed, and a model is proposed for Ni-P electrodeposition employing anodizing pretreatment.

Category: alcohols-buliding-blocks, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts