Hoang, Manh Dat et al. published their research in Engineering in Life Sciences | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Electric Literature of C9H18O5S

Application of an Escherichia coli triple reporter strain for at-line monitoring of single-cell physiology during L-phenylalanine production was written by Hoang, Manh Dat;Doan, Dieu Thi;Schmidt, Marlen;Kranz, Harald;Kremling, Andreas;Heins, Anna-Lena. And the article was included in Engineering in Life Sciences.Electric Literature of C9H18O5S The following contents are mentioned in the article:

Biotechnol. production processes are sustainable approaches for the production of biobased components such as amino acids for food and feed industry. Scale-up from ideal lab-scale bioreactors to large-scale processes is often accompanied by loss in productivity. This may be related to population heterogeneities of cells originating from isogenic cultures that arise due to dynamic non-ideal conditions in the bioreactor. To better understand this phenomenon, deeper insights into single-cell physiologies in bioprocesses are mandatory before scale-up. Here, a triple reporter strain (3RP) was developed by chromosomally integrating the fluorescent proteins mEmerald, CyOFP1, and mTagBFP2 into the L-phenylalanine producing Escherichia coli strain FUS4 (pF81kan) to allow monitoring of growth, oxygen availability, and general stress response of the single cells. Functionality of the 3RP was confirmed in well-mixed lab-scale fed-batch processes with glycerol as carbon source in comparison to the strain without fluorescent proteins, leading to no difference in process performance. Fluorescence levels could successfully reflect the course of related process state variables, revealed population heterogeneities during the transition between different process phases and potentially subpopulations that exhibit superior process performance. Furthermore, indications were found for noise in gene expression as regulation strategy against environmental perturbation. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Electric Literature of C9H18O5S).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Electric Literature of C9H18O5S

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xu, Ye et al. published their research in Journal of Virological Methods in 2022 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Quality Control of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Development of magnetic particle-based chemiluminescence immunoassay for measurement of SARS-CoV-2 nucleocapsid protein was written by Xu, Ye;Xia, Chuan;Zeng, Xuan;Qiu, Yilan;Liao, Minjing;Jiang, Qing;Quan, Meifang;Liu, Rushi. And the article was included in Journal of Virological Methods in 2022.Quality Control of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:

Recently, the Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV-2 infection has spread rapidly around the world, becoming a new global pandemic disease. Nucleic acid detection is the primary method for clin. diagnosis of SARS-CoV-2 infection, with the addition of antibody and antigen detection. Nucleocapsid protein (NP) is a kind of conservative structural protein with abundant expression during SARS-CoV-2 infection, which makes it an ideal target for immunoassay. The coding sequence for SARS-CoV-2-NP was obtained by chem. synthesis, and then inserted into pET28a(+). The soluble recombinant NP (rNP) with an estimated mol. weight of 49.4 kDa was expressed in E. coli cells after IPTG induction. Six-week-old BALB/c mice were immunized with rNP, and then their spleen cells were fused with SP2/0 cells, to develop hybridoma cell lines that stably secreted monoclonal antibodies (mAbs) against NP. The mAbs were preliminarily evaluated by ELISA (ELISA), and then used to develop a magnetic particle-based chemiluminescence enzyme immunoassay (CLEIA) for measurement of SARS-CoV-2-NP. MAb 15B1 and mAb 18G10 were selected as capture and detection antibody resp. to develop CLEIA, due to the highest sensitivity for rNP detection. The proposed CLEIA presented a good linearity for rNP detection at a working range from 0.1 to 160μg/L, with a precision coefficient of variance below 10%. The newly developed mAbs and CLEIA can serve as potential diagnostic tools for clin. measurement of SARS-CoV-2-NP. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Quality Control of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Quality Control of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Qian, Heying et al. published their research in Archives of Virology in 2022 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Computed Properties of C9H18O5S

Metabolic characterization of hemolymph in Bombyx mori varieties after Bombyx mori nucleopolyhedrovirus infection by GC-MS-based metabolite profiling was written by Qian, Heying;Guo, Huimin;Zhang, Xiao;Liu, Mingzhu;Zhao, Guodong;Xu, Anying;Li, Gang. And the article was included in Archives of Virology in 2022.Computed Properties of C9H18O5S The following contents are mentioned in the article:

The “Huakang 2” silkworm variety, bred by the Sericulture Research Institute of the Chinese Academy of Agricultural Sciences, is highly resistant to Bombyx mori nucleopolyhedrovirus (BmNPV) and effectively solves the issue of frequent Bombyx mori nuclear polyhedrosis in sericultural production The mol. mechanism of its resistance to BmNPV, however, is still unknown. The purpose of the present study was therefore to identify these anti-BmNPV mechanisms by using metabolomics in combination with transcriptomics after s.c. injection of budded virus (BV) with high concentrations of BmNPV from specimens of the Baiyu N variety (which is highly resistant to BmNPV) and the Baiyu variety (which is sensitive to BmNPV). A total of 375 differential metabolites were identified, which mainly included sugars, acids, amines, alcs., glycosides, and other small mols. KEGG enrichment anal. and functional clustering of differential metabolites identified possible metabolic pathways, including tyrosine metabolism, oxidative phosphorylation, and alanine, aspartate, and glutamate metabolism The differentially expressed genes (DEGs) identified by transcriptome anal. were annotated in KEGG. Association anal. showed that the metabolic pathways of different silkworm varieties are affected differently by BmNPV infection, triggering a series of complex physiol. and biochem. changes in the organism. In particular, oxidative phosphorylation might be an essential pathway involved in regulation of disease resistance. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Computed Properties of C9H18O5S).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Computed Properties of C9H18O5S

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lopez-Arvizu, Adriana et al. published their research in World Journal of Microbiology & Biotechnology in 2021 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Category: alcohols-buliding-blocks

Improved antimicrobial spectrum of the N-acetylmuramoyl-L-alanine amidase from Latilactobacillus sakei upon LysM domain deletion was written by Lopez-Arvizu, Adriana;Rocha-Mendoza, Diana;Farres, Amelia;Ponce-Alquicira, Edith;Garcia-Cano, Israel. And the article was included in World Journal of Microbiology & Biotechnology in 2021.Category: alcohols-buliding-blocks The following contents are mentioned in the article:

The gene encoding N-acetylmuramoyl-L-alanine amidase in Latilactobacillus sakei isolated from a fermented meat product was cloned in two forms: its complete sequence (AmiC) and a truncated sequence without one of its anchoring LysM domains (AmiLysM4). The objective of this work was to evaluate the effect of LysM domain deletion on antibacterial activity as well the biochem. characterization of each recombinant protein. AmiC and AmiLysM4 were expressed in Escherichia coli BL21. Using a zymog. method, two bands with lytic activity were observed, which were confirmed by LC-MS/MS anal., with mol. masses of 71 kDa (AmiC) and 66 kDa (AmiLysM4). The recombinant proteins were active against Listeria innocua and Staphylococcus aureus strains. The inhibitory spectrum of AmiLysM4 was broader than AmiC as it showed inhibition of Leuconostoc mesenteroides and Weissella viridescens, both microorganisms associated with food decomposition Optimal temperature and pH values were determined for both proteins using L-alanine-p-nitroanilide hydrochloride as a substrate for N-acetylmuramoyl-L-alanine amidase activity. Both proteins showed similar maximum activity values for pH (8) and temperature (50°C). Furthermore, structural predictions did not show differences for the catalytic region, but differences were found for the region called 2dom-AmiLysM4, which includes 4 of the 5 LysM domains. Therefore, modification of the LysM domain offers new tools for the development of novel food biopreservatives. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Category: alcohols-buliding-blocks).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chidambaram, Hariharakrishnan et al. published their research in Journal of Biomolecular Structure and Dynamics in 2022 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Category: alcohols-buliding-blocks

Role of cysteines in accelerating Tau filament formation was written by Chidambaram, Hariharakrishnan;Chinnathambi, Subashchandrabose. And the article was included in Journal of Biomolecular Structure and Dynamics in 2022.Category: alcohols-buliding-blocks The following contents are mentioned in the article:

Alzheimer’s disease is majorly associated with intracellular accumulation of Tau into paired helical filaments and tangles. The self-aggregated dimeric and oligomeric species of Tau formed are more toxic to neuronal cells and acts as seeds for filament formation. The two cysteine residues and the two hexapeptide regions of full-length Tau play a key role in initialization and filament formation during Tau aggregation. The role of cysteine residues in Tau aggregation has been studied by in-vitro aggregation assay that was measured by Thioflavin S fluorescence to observe the kinetics of aggregation. In this study, we have performed in-vitro aggregation assay with recombinant full-length Tau and the cysteine mutants to understand the mechanism of cysteine independent Tau aggregation. Here, we report that cysteine mutant full-length Tau can aggregate to form filaments under in-vitro conditions. To visualize the polymorphisms of Tau and cysteine mutants under different aggregation conditions anionic cofactor, heparin was employed. Wild-type Tau showed rapid aggregation to form oligomers and filaments. On the other hand, the cysteine mutant delayed the initial Tau aggregation. This indicates the importance of cysteine residues in accelerating initial Tau nucleation for its aggregation. The filament morphol. of wild-type and cysteine mutant Tau has been characterized using transmission electron microscopy and high-resolution transmission electron microscopy.Communicated by Ramaswamy H. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Category: alcohols-buliding-blocks).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lu, Ken W. et al. published their research in Metabolic Engineering Communications in 2021 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Synthetic Route of C9H18O5S

Overcoming glutamate auxotrophy in Escherichia coli itaconate overproducer by the Weimberg pathway was written by Lu, Ken W.;Wang, Chris T.;Chang, Hengray;Wang, Ryan S.;Shen, Claire R.. And the article was included in Metabolic Engineering Communications in 2021.Synthetic Route of C9H18O5S The following contents are mentioned in the article:

Biosynthesis of itaconic acid occurs through decarboxylation of the TCA cycle intermediate cis-aconitate. Engineering of efficient itaconate producers often requires elimination of the highly active isocitrate dehydrogenase to conserve cis-aconitate, leading to 2-ketoglutarate auxotrophy in the producing strains. Supplementation of glutamate or complex protein hydrolyzate then becomes necessary, often in large quantities, to support the high cell d. desired during itaconate fermentation and adds to the production cost. Here, we present an alternative approach to overcome the glutamate auxotrophy in itaconate producers by synthetically introducing the Weimberg pathway from Burkholderia xenovorans for 2-ketoglutarate biosynthesis. Because of its independence from natural carbohydrate assimilation pathways in Escherichia coli, the Weimberg pathway is able to provide 2-ketoglutarate using xylose without compromising the carbon flux toward itaconate. With xylose concentration carefully tuned to minimize excess 2-ketoglutarate flux in the stationary phase, the final strain accumulated 20 g/L of itaconate in minimal medium from 18 g/L of xylose and 45 g/L of glycerol. Necessity of the recombinant Weimberg pathway for growth also allowed us to maintain multi-copy plasmids carrying in operon the itaconate-producing genes without addition of antibiotics. Use of the Weimberg pathway for growth restoration is applicable to other production systems with disrupted 2-ketoglutarate synthesis. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Synthetic Route of C9H18O5S).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Synthetic Route of C9H18O5S

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chen, Yinghua et al. published their research in Enzyme and Microbial Technology in 2022 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application In Synthesis of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Controlling expression and inhibiting function of the toxin reporter for simple detection of the promoters’ activities in Escherichia coli was written by Chen, Yinghua;Li, Jinfeng;Zhang, Shuncheng;Hu, Jiong;Chen, Xiaofeng;Lin, Tingting;Dang, Dongya;Fan, Jun. And the article was included in Enzyme and Microbial Technology in 2022.Application In Synthesis of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:

The naturally occurring and mutated promoters inserted into expression plasmids or Escherichia coli chromosome are essential for recombinant protein production and metabolic engineering. Analyzing their activities and screening the promoter libraries require the simple and easy-to-use reporter. Here, we developed a novel and efficient approach to detect the promoter activity, based on E. coli cell growth inhibited by overexpression of bacteriophage ΦX174 gene E product (LyE), but recovered by pre-overexpression of Bacillus subtilis MraY (BsMraY). Under the conditional LyE construct expression in the absence or the presence of the BsMraY, activities of promoters including the reported PT7/lac, Ptac, PBAD, Prha, PhucR, PprpB, Pcum, the wild type and engineered Ptet for leaky and induced expression, the PthrC for auto-induction, and the Pms for constitutive expression were assayed. In one-plasmid coexpression system, the PBAD promoter activity detected using the reporter gene was related to the insertion site. The constructed LyE toxic effects were correlated with toxin expression levels, as determined by the split green fluorescent protein reconstitution. Microscopic anal. showed that cells lysis occurred by the LyE induced with arabinose. Taken together, the toxin reporter construct is a convenient and cost-effective tool to examine the promoter activity in E. coli. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Application In Synthesis of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application In Synthesis of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Boecker, Simon et al. published their research in Microbial Cell Factories in 2021 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli was written by Boecker, Simon;Harder, Bjoern-Johannes;Kutscha, Regina;Pfluegl, Stefan;Klamt, Steffen. And the article was included in Microbial Cell Factories in 2021.Recommanded Product: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:

The alc. 2,3-butanediol (2,3-BDO) is an important chem. and an Escherichia coli producer strain was recently engineered for bio-based production of 2,3-BDO. However, further improvements are required for realistic applications. Here we report that enforced ATP wasting, implemented by overexpressing the genes of the ATP-hydrolyzing F1-part of the ATPase, leads to significant increases of yield and especially of productivity of 2,3-BDO synthesis in an E. coli producer strain under various cultivation conditions. We studied aerobic and microaerobic conditions as well as growth-coupled and growth-decoupled production scenarios. In all these cases, the specific substrate uptake and 2,3-BDO synthesis rate (up to sixfold and tenfold higher, resp.) were markedly improved in the ATPase strain compared to a control strain. However, aerobic conditions generally enable higher productivities only with reduced 2,3-BDO yields while high product yields under microaerobic conditions are accompanied with low productivities. Based on these findings we finally designed and validated a three-stage process for optimal conversion of glucose to 2,3-BDO, which enables a high productivity in combination with relatively high yield. The ATPase strain showed again superior performance and finished the process twice as fast as the control strain and with higher 2,3-BDO yield. Our results demonstrate the high potential of enforced ATP wasting as a generic metabolic engineering strategy and we expect more applications to come in the future. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Recommanded Product: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Schmuck, Benjamin et al. published their research in Microbial Cell Factories in 2021 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Formula: C9H18O5S

Expression of the human molecular chaperone domain Bri2 BRICHOS on a gram per liter scale with an E. coli fed-batch culture was written by Schmuck, Benjamin;Chen, Gefei;Pelcman, Josef;Kronqvist, Nina;Rising, Anna;Johansson, Jan. And the article was included in Microbial Cell Factories in 2021.Formula: C9H18O5S The following contents are mentioned in the article:

The human Bri2 BRICHOS domain inhibits amyloid formation and toxicity and could be used as a therapeutic agent against amyloid diseases. For translation into clin. use, large quantities of correctly folded recombinant human (rh) Bri2 BRICHOS are required. To increase the expression and solubility levels of rh Bri2 BRICHOS it was fused to NT*, a solubility tag derived from the N-terminal domain of a spider silk protein, which significantly increases expression levels and solubility of target proteins. To increase the expression levels even further and reach the g/L range, which is a prerequisite for an economical production on an industrial scale, we developed a fed-batch expression protocol for Escherichia coli. A fed-batch production method for NT*-Bri2 BRICHOS was set up and systematically optimized. This gradual improvement resulted in expression levels of up to 18.8 g/L. Following expression, NT*-Bri2 BRICHOS was purified by chromatog. methods to a final yield of up to 6.5 g/L. After removal of the NT*-tag and separation into different oligomeric species, activity assays verified that different assembly states of the fed-batch produced rh Bri2 BRICHOS have the same ability to inhibit fibrillar and non-fibrillar protein aggregation as the reference protein isolated from shake flask cultures. The protocol developed in this work allows the production of large quantities of rh Bri2 BRICHOS using the solubility enhancing NT*-tag as a fusion partner, which is required to effectively conduct pre-clin. research. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Formula: C9H18O5S).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Formula: C9H18O5S

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Coggan, Kimberly A. et al. published their research in mBio in 2022 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application of 367-93-1

Global regulatory pathways converge to control expression of Pseudomonas aeruginosa type IV pili was written by Coggan, Kimberly A.;Higgs, Matthew G.;Brutinel, Evan D.;Marden, Jeremiah N.;Intile, Peter J.;Winther-Larsen, Hanne C.;Koomey, Michael;Yahr, Timothy L.;Wolfgang, Matthew C.. And the article was included in mBio in 2022.Application of 367-93-1 The following contents are mentioned in the article:

The opportunistic pathogen Pseudomonas aeruginosa relies upon type IV pili (Tfp) for host colonization and virulence. Tfp are retractile surface appendages that promote adherence to host tissue and mediate twitching motility, a form of surface-associated translocation. Tfp are composed of a major structural pilin protein (PilA), several less abundant, fiber-associated pilin-like proteins (FimU, PilV, PilW, PilX, and PilE), and a pilus-associated tip adhesin and surface sensor (PilY1). Several proteins critical for Tfp biogenesis and surface sensing are encoded by the fimUpilVWXY1Y2E operon. Tfp biogenesis is regulated by the global transcription factor Vfr and its allosteric effector, cAMP (cAMP). Our investigation into the basis for reduced Tfp production in cAMP/vfr mutants revealed a defect in the expression of the fimU operon. We found that cAMP/Vfr activation of the fimU operon occurs via direct binding of Vfr to a specific fimU promoter sequence. We also refined the role of the AlgZ/AlgR two-component system in fimU regulation by demonstrating that phosphorylation of the response regulator AlgR is required for maximal binding to the fimU promoter region in vitro. Vfr also regulates expression of the algZR operon, revealing an indirect regulatory loop affecting fimU operon transcription. Overall, these results demonstrate that two linked but independent regulatory systems couple the expression of Tfp biogenesis and surface sensing genes and highlight the regulatory complexity governing expression of P. aeruginosa virulence factors. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Application of 367-93-1).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application of 367-93-1

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts