Zhao, Xiaojia’s team published research in Journal of the American Chemical Society in 2019 | CAS: 34374-88-4

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Regarding monomeric phloroglucinols, this group encompasses acryl phloroglucinols, phloroglucinol-terpene adducts, phloroglucinol glycosides, halogenated phloroglucinols, prenylated phloroglucinols, and cyclicroup polyketides.Electric Literature of C9H6O6

The author of 《Macro/Microporous Covalent Organic Frameworks for Efficient Electrocatalysis》 were Zhao, Xiaojia; Pachfule, Pradip; Li, Shuang; Langenhahn, Thomas; Ye, Mengyang; Schlesiger, Christopher; Praetz, Sebastian; Schmidt, Johannes; Thomas, Arne. And the article was published in Journal of the American Chemical Society in 2019. Electric Literature of C9H6O6 The author mentioned the following in the article:

Covalent organic frameworks (COFs) are of interest for many applications originating from their mech. robust architectures, low d., and high accessible surface area. Depending on their linkers and binding patterns, COFs mainly exhibit microporosity, even though COFs with small mesopores are reported using extended linkers. For some applications, especially when fast mass transport is desired, hierarchical pore structures are an ideal solution, e.g., with small micropores providing large surface areas and larger macropores providing unhindered transport to and from the materials surface. Herein, the authors have developed a facile strategy for the fabrication of crystalline COFs with inherent microporosity and template-induced, homogeneously distributed, yet tunable, macroporous structures. This method was successfully applied to obtain various β-ketoenamine-based COFs with interconnected macro-microporous structures. The as-synthesized macroporous COFs preserve high crystallinity with high sp. surface area. When bipyridine moieties are introduced into the COF backbone, metals such as Co2+ can be coordinated within the hierarchical pore structure (macro-TpBpy-Co). The resulting macro-TpBpy-Co exhibits a high O evolution reaction (OER) activity, which is much improved compared to the purely microporous COF with a competitive overpotential of 380 mV at 10 mA/cm2. This can be attributed to the improved mass diffusion properties in the hierarchically porous COF structures, together with the easily accessible active Co2+-bipyridine sites. The results came from multiple reactions, including the reaction of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4Electric Literature of C9H6O6)

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Regarding monomeric phloroglucinols, this group encompasses acryl phloroglucinols, phloroglucinol-terpene adducts, phloroglucinol glycosides, halogenated phloroglucinols, prenylated phloroglucinols, and cyclicroup polyketides.Electric Literature of C9H6O6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ghosh, Samrat’s team published research in Journal of the American Chemical Society in 2020 | CAS: 34374-88-4

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Regarding monomeric phloroglucinols, this group encompasses acryl phloroglucinols, phloroglucinol-terpene adducts, phloroglucinol glycosides, halogenated phloroglucinols, prenylated phloroglucinols, and cyclicroup polyketides.Application of 34374-88-4

《Identification of Prime Factors to Maximize the Photocatalytic Hydrogen Evolution of Covalent Organic Frameworks》 was written by Ghosh, Samrat; Nakada, Akinobu; Springer, Maximilian A.; Kawaguchi, Takahiro; Suzuki, Katsuaki; Kaji, Hironori; Baburin, Igor; Kuc, Agnieszka; Heine, Thomas; Suzuki, Hajime; Abe, Ryu; Seki, Shu. Application of 34374-88-4 And the article was included in Journal of the American Chemical Society in 2020. The article conveys some information:

Visible-light-driven hydrogen (H2) production from water is a promising strategy to convert and store solar energy as chem. energy. Covalent organic frameworks (COFs) are front runners among different classes of organic photocatalysts. The photocatalytic activity of COFs depends on numerous factors such as the electronic band gap, crystallinity, surface area, exciton migration, stability of transient species, charge separation and transport, etc. However, it is challenging to fine tune all of these factors simultaneously to enhance the photocatalytic activity. Hence, in this report, an effort has been made to understand the interplay of these factors and identify the key factors for efficient photocatalytic H2 production through a structure-property-activity relationship. Careful mol. engineering allowed us to optimize all of the above plausible factors impacting the overall catalytic activities of a series of isoreticular COFs. The present study determines three prime factors: light absorption, charge carrier generation, and its transport, which influence the photocatalytic H2 production of COFs to a much greater extent than the other factors.2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4Application of 34374-88-4) was used in this study.

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Regarding monomeric phloroglucinols, this group encompasses acryl phloroglucinols, phloroglucinol-terpene adducts, phloroglucinol glycosides, halogenated phloroglucinols, prenylated phloroglucinols, and cyclicroup polyketides.Application of 34374-88-4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sheng, Fangmeng’s team published research in Advanced Materials (Weinheim, Germany) in 2021 | CAS: 34374-88-4

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives.Category: alcohols-buliding-blocksFor acyl phloroglucinols, it is considered the largest category of compounds among phloroglucinols of natural characteristics.

Sheng, Fangmeng; Wu, Bin; Li, Xingya; Xu, Tingting; Shehzad, Muhammad A.; Wang, Xiuxia; Ge, Liang; Wang, Huanting; Xu, Tongwen published their research in Advanced Materials (Weinheim, Germany) in 2021. The article was titled 《Efficient Ion Sieving in Covalent Organic Framework Membranes with Sub-2-Nanometer Channels》.Category: alcohols-buliding-blocks The article contains the following contents:

Membranes of sub-2-nm channels show high ion transport rates, but it remains a great challenge to design such membranes with desirable ion selectivities for ion separation applications. Here, covalent organic framework (COF) membranes with a channel size of ≈1.4 nm and abundant hydrogen bonding sites, exhibiting efficient ion sieving properties are demonstrated. The COF membranes have high monovalent cation permeation rates of 0.1-0.2 mol m-2 h-1 and extremely low multivalent cation permeabilities, leading to high monovalent over divalent ion selectivities for K+/Mg2+ of ≈765, Na+/Mg2+ of ≈680, and Li+/Mg2+ of ≈217. Exptl. measurements and theor. simulations reveal that the hydrogen bonding interaction between hydrated cations and the COF channel wall governs the high selectivity, and divalent cations transport through the channel needs to overcome higher energy barriers than monovalent cations. These findings provide an effective strategy for developing sub-2-nm sized membranes with specific interaction sites for high-efficiency ionic separation The experimental process involved the reaction of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4Category: alcohols-buliding-blocks)

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives.Category: alcohols-buliding-blocksFor acyl phloroglucinols, it is considered the largest category of compounds among phloroglucinols of natural characteristics.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhang, Mingshi’s team published research in Journal of the American Chemical Society in 2019 | CAS: 34374-88-4

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Regarding monomeric phloroglucinols, this group encompasses acryl phloroglucinols, phloroglucinol-terpene adducts, phloroglucinol glycosides, halogenated phloroglucinols, prenylated phloroglucinols, and cyclicroup polyketides.Formula: C9H6O6

The author of 《Hierarchical-Coassembly-Enabled 3D-Printing of Homogeneous and Heterogeneous Covalent Organic Frameworks》 were Zhang, Mingshi; Li, Longyu; Lin, Qianming; Tang, Miao; Wu, Yuyang; Ke, Chenfeng. And the article was published in Journal of the American Chemical Society in 2019. Formula: C9H6O6 The author mentioned the following in the article:

Covalent organic frameworks (COFs) are crystalline polymers with permanent porosity. They are usually synthesized as micrometer-sized powders or two-dimensional thin films and membranes for applications in mol. storage, separation, and catalysis. In this work, we report a general method to integrate COFs with imine or β-ketoenamine linkages into three-dimensional (3D)-printing materials. A 3D-printing template, Pluronic F127, was introduced to coassemble with imine polymers in an aqueous environment. By limitation of the degree of imine polycondensation during COF formation, the amorphous imine polymer and F127 form coassembled 3D-printable hydrogels with suitable shear thinning and rapid self-healing properties. After the removal of F127 followed by an amorphous-to-crystalline transformation, three β-ketoenamine- and imine-based COFs were fabricated into 3D monoliths possessing high crystallinity, hierarchical pores with high surface areas, good structural integrity, and robust mech. stability. Moreover, when multiple COF precursor inks were employed for 3D printing, heterogeneous dual-component COF monoliths were fabricated with high spatial precision. This method not only enables the development of COFs with sophisticated 3D macrostructure but also facilitates the heterogeneous integration of COFs into devices with interconnected interfaces at the mol. level. The experimental part of the paper was very detailed, including the reaction process of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4Formula: C9H6O6)

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Regarding monomeric phloroglucinols, this group encompasses acryl phloroglucinols, phloroglucinol-terpene adducts, phloroglucinol glycosides, halogenated phloroglucinols, prenylated phloroglucinols, and cyclicroup polyketides.Formula: C9H6O6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Karak, Suvendu’s team published research in Journal of the American Chemical Society in 2019 | CAS: 34374-88-4

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Regarding monomeric phloroglucinols, this group encompasses acryl phloroglucinols, phloroglucinol-terpene adducts, phloroglucinol glycosides, halogenated phloroglucinols, prenylated phloroglucinols, and cyclicroup polyketides.Reference of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde

The author of 《Inducing Disorder in Order: Hierarchically Porous Covalent Organic Framework Nanostructures for Rapid Removal of Persistent Organic Pollutants》 were Karak, Suvendu; Dey, Kaushik; Torris, Arun; Halder, Arjun; Bera, Saibal; Kanheerampockil, Fayis; Banerjee, Rahul. And the article was published in Journal of the American Chemical Society in 2019. Reference of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde The author mentioned the following in the article:

The key factor responsible for fast diffusion and mass transfer through a porous material is the availability of a widely open pore interior having complete accessibility from their surface. However, because of their highly stacked nature, ordered two-dimensional (2D) materials fail to find real-world applicability, as it is difficult to take advantage of their complete structure, especially the inner cores. In this regard, three-dimensional (3D) nanostructures constructed from layered two-dimensional crystallites could prove to be advantageous. However, the real challenge is to cultivate a porous nanostructure with ordered pores where the pores are surrounded by crystalline walls. Herein, a simple yet versatile in situ gas-phase foaming technique has been employed to address these cardinal issues. The use of baking soda leads to the continuous effervescence of CO2 during the crystallization of foam, which creates ripples and fluctuations on the surface of the 2D crystallites. The induction of ordered micropores within the disordered 3D architecture synergistically renders fast diffusion of various guests through the interconnected pore network. The high-d. defects in the hierarchically porous structure help in ultrafast adsorption (<10 s) of various pollutants (removal efficiency of 99%) from water, all of which would lead to significant environmental benefit. The pseudo-second-order rate constant for the BPA pollutant is 182.3 g mg-1 min-1, which is the highest among all the literature reports to date. The high removal efficiency (highest efficiency of 94% and average efficiency of 70%) of a persistent organic pollutant has been attended for the first time. The results came from multiple reactions, including the reaction of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4Reference of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde)

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Regarding monomeric phloroglucinols, this group encompasses acryl phloroglucinols, phloroglucinol-terpene adducts, phloroglucinol glycosides, halogenated phloroglucinols, prenylated phloroglucinols, and cyclicroup polyketides.Reference of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ding, San-Yuan’s team published research in International Journal of Hydrogen Energy in 2019 | CAS: 34374-88-4

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives.Synthetic Route of C9H6O6Phloroglucinols are known for their broad-spectrum antiviral, antibacterial, antifungal, antihelminthic, and phytotoxic activities.

In 2019,International Journal of Hydrogen Energy included an article by Ding, San-Yuan; Wang, Peng-Lai; Yin, Guan-Lin; Zhang, Xuqiang; Lu, Gongxuan. Synthetic Route of C9H6O6. The article was titled 《Energy transfer in covalent organic frameworks for visible-light-induced hydrogen evolution》. The information in the text is summarized as follows:

We report herein the use of covalent organic frameworks (COFs) to facilitate the energy transfer from sensitizer to the active sites for efficient photocatalysis. The results indicate that the photocatalytic efficiency can be apparently enhanced by using the layered COFs. The visible-light-induced hydrogen evolution rate (10.4 mmol g-1 h-1) for Pd0/TpPa-1 sensitized by Eosin Y was 10 times higher than that of Pd/C. The enhanced photocatalytic H2-production activity could be originated from the improvement of the photogenerated electron transfer in conjugated COFs. The important role of COFs in facilitating the transfer of photogenerated electrons was verified by the transient photocurrent response and the luminescence anal. This research highlights the use of COFs to investigate the energy transfer process. In addition to this study using 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde, there are many other studies that have used 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4Synthetic Route of C9H6O6) was used in this study.

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives.Synthetic Route of C9H6O6Phloroglucinols are known for their broad-spectrum antiviral, antibacterial, antifungal, antihelminthic, and phytotoxic activities.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Khan, Niaz Ali’s team published research in Journal of the American Chemical Society in 2020 | CAS: 34374-88-4

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Phloroglucinol derivatives are a major class of secondary metabolites. Phloroglucinol compounds can be classified into monomeric, dimeric, trimeric and higher phloroglucinols, and phlorotannins.Synthetic Route of C9H6O6

Synthetic Route of C9H6O6In 2020 ,《Solid-Vapor Interface Engineered Covalent Organic Framework Membranes for Molecular Separation》 was published in Journal of the American Chemical Society. The article was written by Khan, Niaz Ali; Zhang, Runnan; Wu, Hong; Shen, Jianliang; Yuan, Jinqiu; Fan, Chunyang; Cao, Li; Olson, Mark A.; Jiang, Zhongyi. The article contains the following contents:

Covalent organic frameworks (COFs) with intrinsic, tunable, and uniform pores are potent building blocks for separation membranes, yet poor processing ability and long processing time remain grand challenges. Herein, we report an engineered solid-vapor interface to fabricate a highly crystalline two-dimensional COF membrane with a thickness of 120 nm in 9 h, which is 8 times faster than the reported literature. Due to the ultra-thin nature and ordered pores, the membrane exhibited an ultra-high permeance (water ∼ 411 L m-2 h-1 bar-1 and acetonitrile ∼ 583 L m-2 h-1 bar-1) and excellent rejection of dye mols. larger than 1.4 nm (> 98%). The membrane exhibited long-term operation which confirmed its outstanding stability. Our solid-vapor interfacial polymerization method may evolve into a generic platform to fabricate COFs and other organic frameworks membranes. The results came from multiple reactions, including the reaction of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4Synthetic Route of C9H6O6)

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Phloroglucinol derivatives are a major class of secondary metabolites. Phloroglucinol compounds can be classified into monomeric, dimeric, trimeric and higher phloroglucinols, and phlorotannins.Synthetic Route of C9H6O6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Mohammed, Abdul Khayum’s team published research in ACS Applied Materials & Interfaces in 2019 | CAS: 34374-88-4

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Regarding monomeric phloroglucinols, this group encompasses acryl phloroglucinols, phloroglucinol-terpene adducts, phloroglucinol glycosides, halogenated phloroglucinols, prenylated phloroglucinols, and cyclicroup polyketides.Quality Control of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde

The author of 《Weak intermolecular interactions in covalent organic framework-carbon nanofiber based crystalline yet flexible devices》 were Mohammed, Abdul Khayum; Vijayakumar, Vidyanand; Halder, Arjun; Ghosh, Meena; Addicoat, Matthew; Bansode, Umesh; Kurungot, Sreekumar; Banerjee, Rahul. And the article was published in ACS Applied Materials & Interfaces in 2019. Quality Control of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde The author mentioned the following in the article:

The redox-active and porous structural backbone of covalent organic frameworks (COFs) can facilitate high-performance electrochem. energy storage devices. However, the utilities of such 2D materials as supercapacitor electrodes in advanced self-charging power-pack systems have been obstructed due to the poor elec. conductivity and subsequent indigent performance. Herein, the authors report an effective strategy to enhance the elec. conductivity of COF thin sheets through the in situ solid-state inclusion of carbon nanofibers (CNF) into the COF precursor matrix. The obtained COF-CNF hybrids possess a significant intermol. π···π interaction between COF and the graphene layers of the CNF. As a result, these COF-CNF hybrids (DqTp-CNF and DqDaTp-CNF) exhibit good elec. conductivity (0.25 × 10-3 S cm-1), as well as high performance in electrochem. energy storage (DqTp-CNF: 464 mF cm-2 at 0.25 mA cm-2). Also, the fabricated, mech. strong quasi-solid-state supercapacitor (DqDaTp-CNF SC) delivered an ultrahigh device capacitance of 167 mF cm-2 at 0.5 mA cm-2. Furthermore, the authors integrated a monolithic photovoltaic self-charging power pack by assembling DqDaTp-CNF SC with a perovskite solar cell. The fabricated self-charging power pack delivered excellent performance in the areal capacitance (42 mF cm-2) at 0.25 mA cm-2 after photocharging for 300 s. In the experiment, the researchers used 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4Quality Control of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde)

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Regarding monomeric phloroglucinols, this group encompasses acryl phloroglucinols, phloroglucinol-terpene adducts, phloroglucinol glycosides, halogenated phloroglucinols, prenylated phloroglucinols, and cyclicroup polyketides.Quality Control of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Fenton, Julie L.’s team published research in Journal of the American Chemical Society in 2021 | CAS: 34374-88-4

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Phloroglucinol derivatives are a major class of secondary metabolites. Phloroglucinol compounds can be classified into monomeric, dimeric, trimeric and higher phloroglucinols, and phlorotannins.Application In Synthesis of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde

Fenton, Julie L.; Burke, David W.; Qian, Dingwen; Cruz, Monica Olvera de la; Dichtel, William R. published an article in 2021. The article was titled 《Polycrystalline Covalent Organic Framework Films Act as Adsorbents, Not Membranes》, and you may find the article in Journal of the American Chemical Society.Application In Synthesis of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde The information in the text is summarized as follows:

Covalent organic framework (COF) membranes are of great promise for energy-efficient separations Thick, polycrystalline COF films have been reported to sep. dyes, salts, bacteria, and nanoparticles on the basis of size-selective transport through ordered pores. Here, we show that these materials function as adsorbents, not as size-sieving membranes. Binding isotherms of several dyes typical of the COF membrane literature to three COF powder samples illustrate that COFs are high-capacity adsorbents with affinities that span a range of 3 orders of magnitude, trends which map onto previously reported separation behavior. Computational results suggest that observed differences in adsorption can be correlated to variable entropic gains driving the adsorption process. Polycrystalline COF pellets show volume-dependent and flow-rate dependent “”rejection”” of dyes, consistent with an adsorption-based removal mechanism. Previous reports of thick, polycrystalline COF membranes used low flow rates and small dye volumes to probe rejection capabilities, where membrane and adsorbent behavior is not distinguishable. A mixed dye separation experiment in flow shows affinity-dependent performance. These results necessitate a careful reexamination of the COF membrane literature, as separations based on differential transport through 2D COF pores remain an important yet unrealized frontier. In addition to this study using 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde, there are many other studies that have used 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4Application In Synthesis of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde) was used in this study.

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Phloroglucinol derivatives are a major class of secondary metabolites. Phloroglucinol compounds can be classified into monomeric, dimeric, trimeric and higher phloroglucinols, and phlorotannins.Application In Synthesis of 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Bhadra, Mohitosh’s team published research in Journal of the American Chemical Society in 2019 | CAS: 34374-88-4

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Phloroglucinol derivatives are a major class of secondary metabolites. Phloroglucinol compounds can be classified into monomeric, dimeric, trimeric and higher phloroglucinols, and phlorotannins.Recommanded Product: 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde

Recommanded Product: 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehydeIn 2019 ,《Triazine functionalized porous covalent organic framework for photo-organocatalytic E-Z isomerization of olefins》 appeared in Journal of the American Chemical Society. The author of the article were Bhadra, Mohitosh; Kandambeth, Sharath; Sahoo, Manoj K.; Addicoat, Matthew; Balaraman, Ekambaram; Banerjee, Rahul. The article conveys some information:

Visible light-mediated photocatalytic organic transformation has drawn significant attention as an alternative process for replacing thermal reactions. Although precious metal/organic dyes based homogeneous photocatalysts have been developed, their toxic and nonreusable nature makes them inappropriate for large-scale production Therefore, we have synthesized a triazine and a keto functionalized nonmetal based covalent organic framework (TpTt) for heterogeneous photocatalysis. As the catalyst shows significant absorption of visible light, it has been applied for the photocatalytic uphill conversion of trans-stilbene to cis-stilbene in the presence of blue light-emitting diodes with broad substrate scope via an energy transfer process. After reading the article, we found that the author used 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4Recommanded Product: 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde)

2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde(cas: 34374-88-4) is a member of phloroglucinol derivatives. Phloroglucinol derivatives are a major class of secondary metabolites. Phloroglucinol compounds can be classified into monomeric, dimeric, trimeric and higher phloroglucinols, and phlorotannins.Recommanded Product: 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts