Yang, Gao-feng et al. published their research in Journal of Organic Chemistry in 2021 | CAS: 2968-93-6

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Computed Properties of C9H9F3O

Regioselective, Diastereoselective, and Enantioselective One-Pot Tandem Reaction Based on an in Situ Formed Reductant: Preparation of 2,3-Disubstituted 1,5-Benzodiazepine was written by Yang, Gao-feng;Li, Guang-xun;Huang, Jin;Fu, Ding-qiang;Nie, Xiao-kang;Cui, Xin;Zhao, Jin-zhong;Tang, Zhuo. And the article was included in Journal of Organic Chemistry in 2021.Computed Properties of C9H9F3O This article mentions the following:

The 1,5-benzodiazepines are important skeletons frequently contained in medicinal chem. Herein, we described an unexpected tandem cyclization/transfer hydrogenation reaction for obtaining chiral 2,3-disubstituted 1,5-benzodiazepines. The enolizable aryl aldehydes were chosen as substrates to react with sym. and unsym. o-phenylenediamines. The unforeseen tandem reaction occurred among many possible latent side reactions under chiral phosphoric acid catalysis and affords the corresponding products in moderate yields and regioselectivities, good diastereoselectivities, and enantiomeric ratio (up to 99:1). In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6Computed Properties of C9H9F3O).

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Computed Properties of C9H9F3O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jung, Hoimin et al. published their research in Journal of the American Chemical Society in 2020 | CAS: 2968-93-6

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Electric Literature of C9H9F3O

Tuning Triplet Energy Transfer of Hydroxamates as the Nitrene Precursor for Intramolecular C(sp3)-H Amidation was written by Jung, Hoimin;Keum, Hyeyun;Kweon, Jeonguk;Chang, Sukbok. And the article was included in Journal of the American Chemical Society in 2020.Electric Literature of C9H9F3O This article mentions the following:

Reported herein is the design of a photosensitization strategy to generate triplet nitrenes and its applicability for the intramol. C-H amidation reactions. Substrate optimization by tuning phys. organic parameters according to the proposed energy transfer pathway led us to identify hydroxamates as a convenient nitrene precursor. While more classical nitrene sources, representatively organic azides, were ineffective under the current photosensitization conditions, hydroxamates, which are readily available from alcs. or carboxylic acids, are highly efficient in accessing synthetically valuable 2-oxazolidinones and 纬-lactams by visible light. Mechanism studies supported our working hypothesis that the energy transfer path is mainly operative. In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6Electric Literature of C9H9F3O).

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Electric Literature of C9H9F3O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Marzi, Elena et al. published their research in European Journal of Organic Chemistry in 2002 | CAS: 2968-93-6

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Computed Properties of C9H9F3O

Fluoro- or trifluoromethyl-substituted benzyl and phenethyl alcohols: Substrates for metal-mediated site-selective functionalization was written by Marzi, Elena;Spitaleri, Andrea;Mongin, Florence;Schlosser, Manfred. And the article was included in European Journal of Organic Chemistry in 2002.Computed Properties of C9H9F3O This article mentions the following:

It was possible to functionalize the three fluorobenzyl alcs. and the three 2-(fluorophenyl)ethanols by metalation and subsequent carboxylation, the prototype electrophilic trapping reaction. Triisopropylsilyl (TIPS) outperformed methoxymethyl (MOM) as an O-protective group making seven new fluorobenzoic acids, including I and II, accessible in 63% average yield. The TIPS group tolerates weakly basic and acidic media and may facilitate further structural elaboration. The unprotected alcs. reacted more sluggishly and were unable to provide two of the targeted products. The yield averaged only 46% in the five other cases. The direct metalation of fluorinated benzyl and phenethyl alcs. remains nevertheless an attractive option because of its operational simplicity. All three (trifluoromethyl)benzyl alcs. and two of the three (trifluoromethyl)phenethyl alc. isomers were successfully submitted to the metalation/functionalization sequence. These five starting materials gave rise to a total nine new benzoic acids or lactones, e.g. III. Despite the poor yields (31% on average), the employed organometallic methods are extremely regioselective, economical and easy to perform. In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6Computed Properties of C9H9F3O).

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Computed Properties of C9H9F3O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Juszynska-Galazka, Ewa et al. published their research in Phase Transitions in 2018 | CAS: 2968-93-6

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Reference of 2968-93-6

Vibrational dynamics of glass forming: 2-phenylbutan-1-ol (BEP), 2-(trifluoromethyl)phenethyl alcohol (2TFMP) and 4-(trifluoromethyl)phenethyl alcohol (4TFMP) in their thermodynamic phases was written by Juszynska-Galazka, Ewa;Zajac, Wojciech;Saito, Kazuya;Yamamura, Yasuhisa;Jurus, Natalia. And the article was included in Phase Transitions in 2018.Reference of 2968-93-6 This article mentions the following:

The complex polymorphism and vibrational dynamics of three glass-forming single-phenyl-ring alcs. (with and without fluorine atoms) have been studied by complementary methods. Glass of isotropic liquid phase and cold crystallization of metastable supercooled liquid state were detected. Temperature investigations of vibrational motions show important role of hydrogen bonds in interactions between mols. Theor. calculations for isolated mol., as well as dimer- and tetramer-type aggregates of non-covalently bound mols., allow for a good description of exptl. spectra. Intermol. interactions of mols. with ortho and para positions of CF3 group in Ph ring have a similar influence on the spectra observed In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6Reference of 2968-93-6).

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Reference of 2968-93-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lu, Zeye et al. published their research in Science China: Chemistry in 2021 | CAS: 2968-93-6

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Formula: C9H9F3O

Highly efficient NHC-iridium-catalyzed 尾-methylation of alcohols with methanol at low catalyst loadings was written by Lu, Zeye;Zheng, Qingshu;Zeng, Guangkuo;Kuang, Yunyan;Clark, James H.;Tu, Tao. And the article was included in Science China: Chemistry in 2021.Formula: C9H9F3O This article mentions the following:

A highly efficient 尾-methylation of primary and secondary alcs. with methanol was achieved by using bis-N-heterocyclic carbene iridium (bis-NHC-Ir) complexes. Broad substrate scope and up to quant. yields were achieved at low catalyst loadings with only hydrogen and water as byproducts. The protocol was readily extended to the 尾-alkylation of alcs. with several primary alcs. Control experiments, along with DFT calculations and crystallog. studies, revealed that the ligand effect was critical to their excellent catalytic performance, shedded light on more challenging Guerbet reactions with simple alcs. In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6Formula: C9H9F3O).

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Formula: C9H9F3O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xie, Jin et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2017 | CAS: 2968-93-6

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C9H9F3O

Antiproliferative activity and SARs of caffeic acid esters with mono-substituted phenylethanols moiety was written by Xie, Jin;Yang, Fengzhi;Zhang, Man;Lam, Celine;Qiao, Yixue;Xiao, Jia;Zhang, Dongdong;Ge, Yuxuan;Fu, Lei;Xie, Dongsheng. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2017.COA of Formula: C9H9F3O This article mentions the following:

A series of caffeic acid phenylethyl ester (CAPE) derivatives with mono-substituted phenylethanols moiety were synthesized and evaluated by MTT assay on growth of 4 human cancer cell lines (Hela, DU-145, MCF-7 and ECA-109). The substituent effects on the antiproliferative activity were systematically investigated for the first time. It was found that electron-donating and hydrophobic substituents at 2′-position of phenylethanol moiety could significantly enhance CAPE’s antiproliferative activity. 2′-Propoxyl derivative, as a novel caffeic acid ester, exhibited exquisite potency (IC50 = 0.4 卤 0.02 & 0.6 卤 0.03 渭M against Hela and DU-145 resp.). In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6COA of Formula: C9H9F3O).

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C9H9F3O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hoejgaard Hansen, Anders et al. published their research in ChemMedChem in 2021 | CAS: 2968-93-6

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. The oxygen atom of the strongly polarized O鈥旽 bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Recommanded Product: 2968-93-6

Structure-Activity Relationship Explorations and Discovery of a Potent Antagonist for the Free Fatty Acid Receptor 2 was written by Hoejgaard Hansen, Anders;Christensen, Henriette B.;Pandey, Sunil K.;Sergeev, Eugenia;Valentini, Alice;Dunlop, Julia;Dedeo, Domonkos;Fratta, Simone;Hudson, Brian D.;Milligan, Graeme;Ulven, Trond;Rexen Ulven, Elisabeth. And the article was included in ChemMedChem in 2021.Recommanded Product: 2968-93-6 This article mentions the following:

Free fatty acid receptor 2 (FFA2) is a sensor for short-chain fatty acids that has been identified as an interesting potential drug target for treatment of metabolic and inflammatory diseases. Although several ligand series are known for the receptor, there is still a need for improved compounds One of the most potent and frequently used antagonists is the amide-substituted phenylbutanoic acid known as CATPB (1). We here report the structure-activity relationship exploration of this compound, leading to the identification of homologues with increased potency. The preferred compound 37 (TUG-1958) was found, besides improved potency, to have high solubility and favorable pharmacokinetic properties. In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6Recommanded Product: 2968-93-6).

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. The oxygen atom of the strongly polarized O鈥旽 bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Recommanded Product: 2968-93-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Bettoni, Leo et al. published their research in Organic Letters in 2019 | CAS: 2968-93-6

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Recommanded Product: 2-(4-(Trifluoromethyl)phenyl)ethanol

Iron-Catalyzed 尾-Alkylation of Alcohols was written by Bettoni, Leo;Gaillard, Sylvain;Renaud, Jean-Luc. And the article was included in Organic Letters in 2019.Recommanded Product: 2-(4-(Trifluoromethyl)phenyl)ethanol This article mentions the following:

尾-Branched alkylated alcs. have been prepared in good yields using a double-hydrogen auto-transfer strategy in the presence of our diaminocyclopentadienone iron tricarbonyl complex Fe1. The alkylation of some 2-arylethanol derivatives was successfully addressed with benzylic alcs. and methanol as alkylating reagents under mild conditions. Deuterium labeling experiments suggested that both alcs. (2-arylethanol and either methanol or benzyl alc.) served as hydrogen donors in this cascade process. In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6Recommanded Product: 2-(4-(Trifluoromethyl)phenyl)ethanol).

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Recommanded Product: 2-(4-(Trifluoromethyl)phenyl)ethanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chen, Yuegang et al. published their research in Journal of the American Chemical Society in 2021 | CAS: 2968-93-6

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Safety of 2-(4-(Trifluoromethyl)phenyl)ethanol

Photocatalytic Dehydroxymethylative Arylation by Synergistic Cerium and Nickel Catalysis was written by Chen, Yuegang;Wang, Xin;He, Xu;An, Qing;Zuo, Zhiwei. And the article was included in Journal of the American Chemical Society in 2021.Safety of 2-(4-(Trifluoromethyl)phenyl)ethanol This article mentions the following:

Under mild reaction conditions with inexpensive cerium and nickel catalysts, easily accessible free alcs. can now be utilized as operationally simple and robust carbon pronucleophiles in selective C(sp3)-C(sp2) cross-couplings. Facilitated by automated high-throughput experimentation, sterically encumbered benzoate ligands have been identified for robust cerium complexes, enabling the synergistic cooperation of cerium catalysis in the emerging metallaphotoredox catalysis. A broad range of free alcs. and aromatic halides can be facilely employed in this transformation, representing a new paradigm for the C(sp3)-C(sp2) bond construction between free alcs. and aryl halides with the extrusion of formaldehyde. Moreover, mechanistic investigations have been conducted, leading to the identification of a tribenzoate cerium(III) complex as a viable intermediate. In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6Safety of 2-(4-(Trifluoromethyl)phenyl)ethanol).

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Safety of 2-(4-(Trifluoromethyl)phenyl)ethanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jung, Hoimin et al. published their research in Journal of the American Chemical Society in 2020 | CAS: 2968-93-6

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Electric Literature of C9H9F3O

Tuning Triplet Energy Transfer of Hydroxamates as the Nitrene Precursor for Intramolecular C(sp3)-H Amidation was written by Jung, Hoimin;Keum, Hyeyun;Kweon, Jeonguk;Chang, Sukbok. And the article was included in Journal of the American Chemical Society in 2020.Electric Literature of C9H9F3O This article mentions the following:

Reported herein is the design of a photosensitization strategy to generate triplet nitrenes and its applicability for the intramol. C-H amidation reactions. Substrate optimization by tuning phys. organic parameters according to the proposed energy transfer pathway led us to identify hydroxamates as a convenient nitrene precursor. While more classical nitrene sources, representatively organic azides, were ineffective under the current photosensitization conditions, hydroxamates, which are readily available from alcs. or carboxylic acids, are highly efficient in accessing synthetically valuable 2-oxazolidinones and γ-lactams by visible light. Mechanism studies supported our working hypothesis that the energy transfer path is mainly operative. In the experiment, the researchers used many compounds, for example, 2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6Electric Literature of C9H9F3O).

2-(4-(Trifluoromethyl)phenyl)ethanol (cas: 2968-93-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Electric Literature of C9H9F3O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts