Drouin, Samantha D. et al. published their research in Inorganica Chimica Acta in 2021 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Formula: C4H9NaS

Electrochemistry of transition metal hydride diphosphine complexes trans-MH(X)(PP)2 and trans-[MH(L)(PP)2]+, M = Fe, Ru, Os; PP = chelating phosphine ligand was written by Drouin, Samantha D.;Maltby, Patricia A.;Rennie, Benjamin E.;Schweitzer, Caroline T.;Golombek, Adina;Cappellani, E. Paul;Morris, Robert H.. And the article was included in Inorganica Chimica Acta in 2021.Formula: C4H9NaS This article mentions the following:

A series of over 30 iron, ruthenium, and osmium hydride phosphine complexes are reported, along with their MIII/II redox potentials. The complexes are of the type MH(PP)n(X) or [MH(PP)n(L)]+, where PP is one of the following bidentate phosphine ligands: dppe, dtpe, depe, and dtfpe, with n = 2; or the tetradentate phosphine ligand meso-tet-1, with n = 1. The electrochem. data of these complexes and those from the literature are used to determine the Lever EL parameter of -0.65 V for the hydride ligand for iron and ruthenium. For osmium, however, the EL value for the hydride ligand is found to be more pos. at only -0.37 V, an increase which is attributed to Os-H σ bond strengthening due to relativistic effects. The correlation holds for irreversible oxidations as well as reversible ones. These EL values can now be used along with Lever’s equations to predict redox potentials of other iron-group hydride complexes. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2Formula: C4H9NaS).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Formula: C4H9NaS

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Raab, Conrad E. et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2006 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Related Products of 29364-29-2

Synthesis of the first sulfur-35-labeled hERG radioligand was written by Raab, Conrad E.;Butcher, John W.;Connolly, Thomas M.;Karczewski, Jerzy;Yu, Nathan X.;Staskiewicz, Steven J.;Liverton, Nigel;Dean, Dennis C.;Melillo, David G.. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2006.Related Products of 29364-29-2 This article mentions the following:

The synthesis of the first high specific activity S-35-labeled hERG radioligand, [35S]MK-0499, for use in high-throughput-screening (HTS) assays of drug candidates for hERG interaction is described. The radioligand is prepared by [35S]sulfonylation of a high diastereomeric excess (de) aniline precursor prepared from unlabeled MK-0499. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2Related Products of 29364-29-2).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Related Products of 29364-29-2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Ruiting et al. published their research in Preprints – American Chemical Society, Division of Petroleum Chemistry in 2003 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.COA of Formula: C4H9NaS

Oxidation of sodium mercaptide with sulfonated cobalt phthalocyanine as catalyst was written by Liu, Ruiting;Xia, Daohong;Xiang, Yuzhi. And the article was included in Preprints – American Chemical Society, Division of Petroleum Chemistry in 2003.COA of Formula: C4H9NaS This article mentions the following:

The oxidation of Na mercaptides by air in alk. solution with CoSPc as catalyst was studied. Effects of various factors, including temperature, structures of mercaptides and concentration of alk. solution, on the oxidation of Na mercaptides were analyzed, which can provide some guides for the design of parameters in LPG sweetening. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2COA of Formula: C4H9NaS).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.COA of Formula: C4H9NaS

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sayegh, Adnan et al. published their research in ChemElectroChem in 2021 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Application In Synthesis of Sodium 2-methyl-2-propanethiolate

Finding Adapted Quinones for Harvesting Electrons from Photosynthetic Algae Suspensions was written by Sayegh, Adnan;Perego, Luca A.;Arderiu Romero, Marc;Escudero, Louis;Delacotte, Jerome;Guille-Collignon, Manon;Grimaud, Laurence;Bailleul, Benjamin;Lemaitre, Frederic. And the article was included in ChemElectroChem in 2021.Application In Synthesis of Sodium 2-methyl-2-propanethiolate This article mentions the following:

Among all the chem. and biotechnol. strategies implemented to extract energy from oxygenic photosynthesis, several concern the use of intact photosynthetic organisms (algae, cyanobacteria…). This means rerouting (fully or partially) the electron flow from the photosynthetic chain to an outer collecting electrode thus generating a photocurrent. While diverting photosynthetic electrons from living biol. systems is an encouraging approach, this strategy is limited by the need to use an electron shuttle. Redox mediators that are able to interact with an embedded photosynthetic chain are rather scarce. In this respect, exogenous quinones are the most frequently used. Unfortunately, some of them also act as poisoning agents within relatively long timeframes. It thus raises the question of the best quinone. In this work, we use a previously reported electrochem. device to analyze the performance of different quinones. Photocurrents (maximum photocurrent, stability) were measured from suspensions of Chlamydomonas reinhardtii algae/quinones by chronoamperometry and compared to parameters like quinone redox potentials or cytotoxic concentration From these results, several quinones were synthesized and analyzed in order to find the best compromise between bioelectricity production and toxicity. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2Application In Synthesis of Sodium 2-methyl-2-propanethiolate).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Application In Synthesis of Sodium 2-methyl-2-propanethiolate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jang, Yujin et al. published their research in Journal of Alloys and Compounds in 2016 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of Sodium 2-methyl-2-propanethiolate

Highly-conformal nanocrystalline molybdenum nitride thin films by atomic layer deposition as a diffusion barrier against Cu was written by Jang, Yujin;Kim, Jun Beom;Hong, Tae Eun;Yeo, So Jeong;Lee, Sunju;Jung, Eun Ae;Park, Bo Keun;Chung, Taek-Mo;Kim, Chang Gyoun;Lee, Do-Joong;Lee, Han-Bo-Ram;Kim, Soo-Hyun. And the article was included in Journal of Alloys and Compounds in 2016.Quality Control of Sodium 2-methyl-2-propanethiolate This article mentions the following:

Molybdenum nitride (Mo2N) thin films were grown by at. layer deposition (ALD) using a sequential supply of a newly synthesized Mo metalorganic precursor, Mo(NtBu)2(StBu)2, and H2 plasma at a substrate temperature of 300 °C. A newly proposed ALD system exhibited typical ALD characteristics, such as a self-limited film growth and a linear dependency of the film thickness on the number of ALD cycles, and showed a growth rate of 0.028 nm/cycle on a thermally grown SiO2 substrate. Such the ideal ALD growth characteristics enabled excellent step coverage of ∼80% for the ALD-grown Mo2N film onto nano-trenches with a width of 25 nm and an aspect ratio ∼4.5. The optimized film had a resistivity as low as ∼350 μΩ-cm. X-ray diffraction, Rutherford backscattering spectrometry, and XPS analyses confirmed that formation of N-rich cubic Mo2N (N/Mo = ∼0.7) phase with carbon and sulfur impurities of 2.6 and 7.4 at.%, resp. Plan-view transmission electron microscopy anal. showed that the film formed a nanocrystalline microstructure with 5-8-nm-sized grains embedded in an amorphous matrix. An ultrathin (only ∼4 nm-thick) ALD-grown Mo2N film effectively prevented diffusion of Cu into Si after annealing at a temperature even up to 650 °C. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2Quality Control of Sodium 2-methyl-2-propanethiolate).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of Sodium 2-methyl-2-propanethiolate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

El-khateeb, Mohammad et al. published their research in Inorganica Chimica Acta in 2021 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Application of 29364-29-2

Spectroscopic analysis and molecular structures of mononuclear bis(t-butyltrithiocarbonato)-nickel, -palladium and (t-butyltrithiocarbonato)(t-butylthiolato)platinum dimer was written by El-khateeb, Mohammad;Moriyama, Hayato;Yoshida, Yukihiro;Kitagawa, Hiroshi. And the article was included in Inorganica Chimica Acta in 2021.Application of 29364-29-2 This article mentions the following:

Treatment of the bis(triphenylphosphine)dichlorometal (PPh3)2MCl2 (M = Ni, Pd, Pt) with the trithiocarbonato anion (ButSCS2) gave products depending on the metal center. In case of nickel, the product is Ni(κ2S,S-S2CSBut)2 (1) while for the palladium case, a similar complex Pd(κ2S,S-S2CSBut)2 (2) was obtained in addition to the dithiocarbonato complex (PPh3)2Pd(κ2S,S-S2C:O). However, the platinum reaction gave two products, a dimeric species Pt2(μ-SBut)22S,S-S2CSBut)2 (3) and the known trithiocarbonato complex (PPh3)2Pt(κ2S,S-S2C:S). These products were characterized by IR, 1H, 13C{1H} NMR and UV-Vis spectroscopy. Crystal structures of these complexes were determined by single crystal x-ray diffraction measurements. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2Application of 29364-29-2).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Application of 29364-29-2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sifri, Renee J. et al. published their research in Polymer Chemistry in 2020 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Computed Properties of C4H9NaS

Photocontrolled cationic degenerate chain transfer polymerizations via thioacetal initiators was written by Sifri, Renee J.;Kennedy, Audrey J.;Fors, Brett P.. And the article was included in Polymer Chemistry in 2020.Computed Properties of C4H9NaS This article mentions the following:

Recent developments in photocontrolled polymerizations have facilitated the development of previously inaccessible materials. While photocontrolled radical polymerizations have been extensively studied, related processes involving cationic polymerizations are underexplored and limited to RAFT processes. In this study, we disclose a visible light, temporally controlled cationic polymerization of vinyl ethers utilizing thioacetals and a photoredox catalyst. We demonstrate a broad scope of thioacetal initiators that achieve a well-controlled polymerization by recapping propagating chains via photocatalyst turnover in combination with a degenerate chain transfer process through sulfonium intermediates. Furthermore, we show that a photocatalyst with a more reducing ground state reduction potential allows for enhanced control and excellent temporal regulation of polymerization In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2Computed Properties of C4H9NaS).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Computed Properties of C4H9NaS

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hu, Yanhe et al. published their research in Journal of the American Chemical Society in 2010 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Name: Sodium 2-methyl-2-propanethiolate

Base-Induced Mechanistic Variation in Palladium-Catalyzed Carbonylation of Aryl Iodides was written by Hu, Yanhe;Liu, Jing;Lu, Zhixin;Luo, Xiancai;Zhang, Heng;Lan, Yu;Lei, Aiwen. And the article was included in Journal of the American Chemical Society in 2010.Name: Sodium 2-methyl-2-propanethiolate This article mentions the following:

A mechanism, which is distinct from the traditional one when sodium alkoxide was used instead of tertiary amines, was proposed for the alkoxycarbonylation of aryl iodides. The catalytic cycle was composed of oxidative addition, subsequent ArPdOR formation, CO insertion to Pd-OR, and final reductive elimination of ArPdCOOR. The kinetic simultaneity of the formation of deiodinated side product from the aryl iodide and aldehyde from corresponding alc. provided strong evidence for the existence of ArPdOR species. The observation of thioether, as the other competitive product in palladium catalyzed thiocarbonylation of aryl iodides and sodium alkylthiolate, also indicate the possibility of metathesis between ArPdI and sodium alkylthiolate. Preliminary kinetic studies revealed that neither oxidative addition nor reductive elimination was rate limiting. DFT calculation displayed preference for CO insertion into Pd-OR bond. The advantage of this novel mechanism had been demonstrated in the facile alkoxycarbonylation and thiocarbonylation. The ethoxycarbonylation of aryl iodides under room temperature and balloon pressure of CO in the presence of EtONa were examined, and good to high yields were obtained; the t-butoxycarbonylation reactions in the presence of t-BuONa were achieved, and the alkylthiocarbonylation (including the t-butylthiocarbonylation) of aryl iodides in the presence of sodium alkylthiolate were also investigated. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2Name: Sodium 2-methyl-2-propanethiolate).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Name: Sodium 2-methyl-2-propanethiolate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Bleeke, John R. et al. published their research in Organometallics in 2004 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Formula: C4H9NaS

Metallacyclohexadiene and Metallabenzene Chemistry. Part 18. Synthesis, Structure, Spectroscopy, and Reactivity of a Neutral Iridathiabenzene was written by Bleeke, John R.;Hinkle, Paul V.;Shokeen, Monica;Rath, Nigam P.. And the article was included in Organometallics in 2004.Formula: C4H9NaS This article mentions the following:

Treatment of the cationic iridathiabenzene [cyclic][CH:C(Me)C(Me):CHS:Ir(PEt3)3]+BF4 (3) with Na tert-butylthiolate gives a stable neutral iridathiabenzene, [cyclic]CH:C(Me)C(Me):CHS:Ir(PEt3)2(S-tert-Bu) (4). Compound 4 exists in solution as an equilibrating mixture of two square pyramidal isomers, cis 4a and trans 4b. When 4 is cooled to -30° in MeCN, it precipitates as an MeCN adduct, [cyclic]CH:C(Me)C(Me):CHSIr(PEt3)2(S-tert-Bu)(NCMe) (6), featuring an iridathiacyclohexa-1,3-diene ring system. Compound 6 reverts back to 4 upon redissolving and warming to room temperature Treatment of 4 (or 6) with excess PMe3 results in addition of PMe3 to the Ir center and replacement of the bulky PEt3 ligands with PMe3‘s, producing [cyclic]CH:C(Me)C(Me):CHSIr(PMe3)3(S-tert-Bu) (7) as a mixture of equilibrating isomers, cis 7a and trans 7b. Compound 7, like 6, includes a nonaromatic iridathiacyclohexa-1,3-diene ring. When 4 in MeCN solvent (or 6) is reacted with trifluoromethanesulfonic acid, protonation occurs at the thiolate S, causing loss of thiol. The resulting cationic fragment dimerizes to produce [cyclic]{[CH:C(Me)C(Me):CHSIr(PEt3)2(NCMe)]2}2+(O3SCF3)2 (8), in which the two Ir centers are bridged by the two ring sulfurs. Finally, treatment of 4 (or 6) with [(η5-C5Me5)Ru(NCMe)3]+O3SCF3 gave the sandwich compound [cyclic]{η5-[CH:C(Me)C(Me):CHSIr(PEt3)2(S-tert-Bu)]Ru(η5-C5Me5)}+O3SCF3 (9), which exists in solution as an equilibrating mixture of isomers, cis 9a and trans 9b. Compounds 4a, 7a, 8, and 9a were structurally characterized by x-ray diffraction. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2Formula: C4H9NaS).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Formula: C4H9NaS

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Jian-Rong et al. published their research in Crystal Growth & Design in 2003 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.SDS of cas: 29364-29-2

Structural Diversities of Silver(I) Coordination Compounds with Flexible Dithioether Ligands Based upon Changing the Ligand Spacers was written by Li, Jian-Rong;Zhang, Ruo-Hua;Bu, Xian-He. And the article was included in Crystal Growth & Design in 2003.SDS of cas: 29364-29-2 This article mentions the following:

To study the influences of ligand spacers of flexible bis(thioether) bridging ligands on the framework formations of their complexes, six new AgI coordination compounds with structurally related bis(tert-butylthio)alkane ligands, Ln = Me3CS-(CH2)n-SCMe3 where n = 1-6, [(AgL1)ClO4]n (1), {[Ag(L2)1.5]ClO4}n (2), [(AgL3)ClO4]2 (3), {[Ag(L4)1.5]ClO4}n (4), [(AgL5)ClO4]2 (5), and {[Ag(L6)1.5]ClO4}n (6), were synthesized and structurally characterized by elemental anal., IR, 1H NMR spectra, and x-ray crystallog. In 1, the AgI centers are linked by bridging L1 to form a 1-dimensional (1-D) zigzag chain, and 2 has an extended two-dimensional (2-D) (6,3) topol. array with hexagonal 30-membered macrometallacycles. Complexes 3 and 5 show similar discrete dinuclear structures. Complexes 4 and 6 consist of single-double bridging chains in which dinuclear macrometallacycles are further linked by single bridging L ligands. The differences among these structures indicate that the spacers of ligands have important effects on the framework formation of their AgI complexes, and this presents a feasible way for controlling the structures of such complexes by modifying the ligand spacers. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2SDS of cas: 29364-29-2).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.SDS of cas: 29364-29-2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts