Zhou, Yaxing et al. published their research in BMC Genomics in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Related Products of 29106-49-8

Integrated metabolomics and transcriptomic analysis of the flavonoid regulatory networks in Sorghum bicolor seeds was written by Zhou, Yaxing;Lv, Jingbo;Yu, Zhonghao;Wang, Zhenguo;Li, Yan;Li, Mo;Deng, Zhilan;Xu, Qingquan;Cui, Fengjuan;Zhou, Wei. And the article was included in BMC Genomics in 2022.Related Products of 29106-49-8 The following contents are mentioned in the article:

The objective of this study was to reveal the flavonoid biosynthesis pathway in white (Z6), red (Z27) and black (HC4) seeds of the sweet sorghum (Sorghum bicolor) using metabolomics and transcriptomics, to identify different flavonoid metabolites, and to analyze the differentially expressed genes involved in flavonoid biosynthesis. We analyzed the metabolomics and transcriptomics data of sweet sorghum seeds. Six hundred and fifty-one metabolites including 171 flavonoids were identified in three samples. Integrated anal. of transcriptomics and metabolomics showed that 8 chalcone synthase genes (gene19114, gene19115, gene19116, gene19117, gene19118, gene19120, gene19122 and gene19123) involved in flavonoid biosynthesis, were identified and play central role in change of color. Six flavanone including homoeriodictyol, naringin, prunin, naringenin, hesperetin and pinocembrin were main reason for the color difference. Our results provide valuable information on the flavonoid metabolites and the candidate genes involved in the flavonoid biosynthesis pathway in sweet sorghum seeds. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Related Products of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Related Products of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Acosta-Otalvaro, Elly et al. published their research in Journal of Food Science and Technology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.COA of Formula: C30H26O12

Cocoa extract with high content of flavan 3-ols, procyanidins and methylxanthines was written by Acosta-Otalvaro, Elly;Valencia-Gallego, Wilmar;Mazo-Rivas, Juan Camilo;Garcia-Viguera, Cristina. And the article was included in Journal of Food Science and Technology in 2022.COA of Formula: C30H26O12 The following contents are mentioned in the article:

The health benefits of cocoa depend on the flavan 3-ols, procyanidins, and methylxanthines, which decrease from the early stages of cocoa bean processing. The objective of this research was to obtain a cocoa extract high in these compounds with (-)-epicatechin as the primary reference An evaluation of two pretreatments of cocoa beans with a control after harvesting was made: A (untreated/control), B (Frozen), and C (Polyphenol oxidase inhibition), all followed by dehydration at 45°C until obtaining a cocoa powder. In terms of (-)-epicatechin content, the best pretreatment was put on to a hydroalcoholic extraction Flavan 3-ols, procyanidins, methylxanthines, and total polyphenols content (TPC), were quantified in the cocoa powders and the hydroalcoholic extract The results showed that the control (A), significantly conserves the (-)-epicatechin (24.964 ± 0.400 mg/g) ca. 7 times more than conventionally sun-dried and fermented beans (3.742 ± 1.977 mg/g) ca. The hydroalcoholic extraction increased the (-)-epicatechin ca. 3 times more based on pretreatment A (84.738 mg/g). This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8COA of Formula: C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.COA of Formula: C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Semenov, Valentin A. et al. published their research in Journal of Physical Chemistry B in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.SDS of cas: 29106-49-8

Combined Computational NMR and Molecular Docking Scrutiny of Potential Natural SARS-CoV-2 Mpro Inhibitors was written by Semenov, Valentin A.;Krivdin, Leonid B.. And the article was included in Journal of Physical Chemistry B in 2022.SDS of cas: 29106-49-8 The following contents are mentioned in the article:

In continuation of the search for potential drugs that inhibit the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in this work, a combined approach based on the modeling of NMR chem. shifts and mol. docking is suggested to identify the possible suppressors of the main protease of this virus among a number of natural products of diverse nature. Primarily, with the aid of an artificial neural network, the problem of the reliable determination of the stereochem. structure of a number of studied compounds was solved. Complementary to the main goal of this study, theor. modeling of NMR spectral parameters made it feasible to perform a number of signal reassignments together with introducing some missing NMR data. Finally, mol. docking formalism was applied to the anal. of several natural products that could be chosen as prospective candidates for the role of potential inhibitors of the main protease. The results of this study are believed to assist in further research aimed at the development of specific drugs based on the natural products against COVID-19. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8SDS of cas: 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.SDS of cas: 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sioriki, Eleni et al. published their research in Food Chemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

The effect of cocoa alkalization on the non-volatile and volatile mood-enhancing compounds was written by Sioriki, Eleni;Tuenter, Emmy;de Walle, Davy Van;Lemarcq, Valerie;Cazin, Catherine S. J.;Nolan, Steven P.;Pieters, Luc;Dewettinck, Koen. And the article was included in Food Chemistry in 2022.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

Alkalization is a process to improve color, dispersibility and flavor of cocoa powder but is likely to have a neg. effect on the phytochems. Hereto, the impact of alkalization degree (none, medium and high) on the potential mood-enhancing compounds corresponding to the four levels of the mood pyramid model (flavanols, methylxanthines, biogenic amines and orosensory properties) was investigated. The phytochem. content, analyzed via UPLC-HRMS, showed reduction of specific potential mood-enhancing compounds upon alkalization, implying a decrease in bitterness and astringency. Moreover, volatile compounds anal. via HS-SPME-GC-MS indicated that alkalization reduced the levels of volatile compounds, responsible for acidity, fruity, floral and cocoa aromas. With respect to the orosensory properties, the cocoa powder palatability was suggested to be increased due to reduced acidity, bitterness, and astringency, while the desired volatile compounds were reduced. However, sensorial anal. is required to link the volatile results with the overall effect on the flavor perception. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Fan, Yuting et al. published their research in Food Chemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.HPLC of Formula: 29106-49-8

Investigation of binding interaction between bovine α-lactalbumin and procyanidin B2 by spectroscopic methods and molecular docking was written by Fan, Yuting;He, Qingyu;Gan, Chao;Wen, Zhen;Yi, Jiang. And the article was included in Food Chemistry in 2022.HPLC of Formula: 29106-49-8 The following contents are mentioned in the article:

The interactions between bovine α-lactalbumin and procyanidin B2 were fully investigated by spectroscopic methods and mol. docking. This study hypothesized that ALA could spontaneously interact with procyanidin B2 to form protein-based complex delivery carrier. Far UV CD and FTIR data demonstrated ALA’s secondary structures were altered and intrinsic fluorescence quenching suggested ALA conformation was changed with procyanidin B2. Calorimetric technique illustrated ALA-procyanidin B2 complexation was a spontaneous and exothermic process with the number of binding site (n, 3.53) and the binding constant (Kb, 2.16 x 104 M-1). A stable nano-delivery system with ALA can be formed for encapsulating, stabilizing and delivering procyanidin B2. Mol. docking study further elucidated that hydrogen bonds dominated procyanidin B2 binding to ALA in a hydrophobic pocket. This study shows great potential in using ALA as protein-based nanocarriers for oral delivery of hydrophilic nutraceuticals, because procyanidin B2-loaded ALA complex delivery systems can be spontaneously formed. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8HPLC of Formula: 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.HPLC of Formula: 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lin, Jiazheng et al. published their research in Journal of the Science of Food and Agriculture in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: 29106-49-8

Effect of red light on the composition of metabolites in tea leaves during the withering process using untargeted metabolomics was written by Lin, Jiazheng;Liu, Fei;Zhou, Xiaofen;Tu, Zheng;Chen, Lin;Wang, Yuwan;Yang, Yunfei;Wu, Xun;Lv, Haowei;Zhu, Hongkai;Ye, Yang. And the article was included in Journal of the Science of Food and Agriculture in 2022.Recommanded Product: 29106-49-8 The following contents are mentioned in the article:

Red light withering significantly improves the sensory flavor qualities of tea, although changes in metabolites during this process have not been systematically studied until now. The present study comprehensively analyzes metabolites in withered tea leaves at 2-h intervals up to 12 h under red light (630 nm) and dark conditions using ultra performance liquid chromatog.-high resolution mass spectrometry (untargeted metabolomics). Ninety-four non-volatile compounds are identified and relatively quantified, including amino acids, catechins, dimeric catechins, flavonol glycosides, glycosidically-bound volatiles, phenolic acids and nucleosides. The results show that amino acids, catechins and dimeric catechins are most affected by red light treatment. Ten free amino acids, theaflavins and theasinensin A increase after red light irradiation, whereas epigallocatechin gallate and catechin fall. The present study provides a comprehensive and systematic profile of the dynamic effects of red light on withering tea and a rationale for its use in tea processing quality control. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Recommanded Product: 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

De Bellis, Roberta et al. published their research in Journal of Functional Foods in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: 29106-49-8

High production of secondary metabolites and biological activities of Cydonia oblonga Mill. pulp fruit callus was written by De Bellis, Roberta;Chiarantini, Laura;Potenza, Lucia;Gorassini, Andrea;Verardo, Giancarlo;De Marco, Rossella;Benayada, Leila;Stocchi, Vilberto;Cristina Albertini, Maria;Fraternale, Daniele. And the article was included in Journal of Functional Foods in 2022.Recommanded Product: 29106-49-8 The following contents are mentioned in the article:

This study has developed an innovative method for the production of secondary metabolites starting from Cydonia oblonga Mill (quince) pulp callus culture. The qual. and quant. content of phenolic and triterpenic acids of quince callus extract were elucidated by GC-MS, GC, and HPLC-DAD-ESI-MSn. The callus extract was rich of 5-O-caffeoylquinic acid (5-CQA), 5-p-coumaroylquinic acid (5-p-CoQA) and maslinic and corosolic acid. Quince callus extract’s radical scavenging and antioxidant activity were evaluated by 2,2-diphenyl-1-picrylhydrazyl, 2,2,-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and Oxygen Radical Absorbance Capacity methods. The genoprotection was evaluated by gel electrophoresis anal. and quant. Real-Time PCR. In addition to the good antioxidant activity the quince callus extract is a strong inhibitor of α-glucosidase (IC50 of 0.25 ± 0.02 mg dw/mL) and lipase (IC50 of 1.99 ± 0.005 mg dw/mL), but mild inhibitor of α-amylase. Therefore, this work would be significant for the future development of a nutraceutical approach to the management of hyperglycemia and dyslipidemia. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Recommanded Product: 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Incili, Gokhan Kursad et al. published their research in Meat Science in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Synthetic Route of C30H26O12

Impact of chitosan embedded with postbiotics from Pediococcus acidilactici against emerging foodborne pathogens in vacuum-packaged frankfurters during refrigerated storage was written by Incili, Gokhan Kursad;Karatepe, Pinar;Akgol, Muzeyyen;Tekin, Ali;Kanmaz, Hilal;Kaya, Busra;Calicioglu, Mehmet;Hayaloglu, Ali Adnan. And the article was included in Meat Science in 2022.Synthetic Route of C30H26O12 The following contents are mentioned in the article:

The objective of the study was to carry out characterization of postbiotics from Pediococcus acidilactici and to assess their efficacy (50% and 100%) in combination with chitosan (0.5 and 1%) against Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes on frankfurters during refrigerated storage for 35 days. High amounts of total phenolic content (1708.15 ± 93.28 mg GAE/L) and carboxylic acids, which comprised 74.89% of the total volatiles, were found in the postbiotics. On day 0, the postbiotic-chitosan combinations decreased the E. coli O157:H7, L. monocytogenes and S. Typhimurium counts ranging from 1.58 to 3.21 log10 compared to the control in frankfurters (P < 0.05). Total viable count and number of lactic acid bacteria were effectively reduced in all treatment groups (P < 0.05), and postbiotic and chitosan treatments did not cause any changes in pH and color of the frankfurters. In conclusion, postbiotic-chitosan combinations can be used to reduce the risks that might be associated with E. coli O157:H7, L. monocytogenes, and S. Typhimurium in frankfurters. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Synthetic Route of C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Synthetic Route of C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhou, Binxing et al. published their research in Food Chemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Formula: C30H26O12

Impact of prolonged withering on phenolic compounds and antioxidant capability in white tea using LC-MS-based metabolomics and HPLC analysis: Comparison with green tea was written by Zhou, Binxing;Wang, Zihao;Yin, Peng;Ma, Bingsong;Ma, Cunqiang;Xu, Chengcheng;Wang, Jiacai;Wang, Ziyu;Yin, Dingfang;Xia, Tao. And the article was included in Food Chemistry in 2022.Formula: C30H26O12 The following contents are mentioned in the article:

Contents of 20 bioactive compounds in 12 teas produced in Xinyang Region were determined by high performance liquid chromatog. Ultra-high performance liquid chromatog.-quadrupole time of flight-mass spectrometry was developed for untargeted metabolomics anal. Antioxidant activities were measured by 4 various assays. Those teas could be completely divided into green and white tea through principal component anal., hierarchical cluster anal. and orthonormal partial least squares-discriminant anal. (R2Y = 0.996 and Q2 = 0.982, resp.). The prolonged withering generated 472 differentiated metabolites between white and green tea, prompted significant decreases (variable importance in the projection > 1.0, p-value < 0.05 and fold change > 1.50) of most catechins and 8 phenolic acids to form 4 theaflavins, and benefited for the accumulation of 17 flavonoids and flavonoid glycosides, 8 flavanone and their derivatives, 20 free amino acids, 12 sugars and 1 purine alkaloid. Addnl., kaempferol and taxifolin contributed to 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability of white tea. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Formula: C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Formula: C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wisnuwardani, Ratih W. et al. published their research in International Journal of Food Sciences and Nutrition in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Computed Properties of C30H26O12

Adolescents′ dietary polyphenol intake in relation to serum total antioxidant capacity: the HELENA study was written by Wisnuwardani, Ratih W.;De Henauw, Stefaan;Forsner, Maria;Gottrand, Frederic;Huybrechts, Inge;Kafatos, Antonios G.;Kersting, Mathilde;Knaze, Viktoria;Manios, Yannis;Nova, Esther;Molnar, Denes;Rothwell, Joseph A.;Scalbert, Augustin;Sette, Stefania;Widhalm, Kurt;Moreno, Luis A.;Michels, Nathalie. And the article was included in International Journal of Food Sciences and Nutrition in 2022.Computed Properties of C30H26O12 The following contents are mentioned in the article:

We evaluated the association between intake of total polyphenols, polyphenol classes and the 10 most consumed individual polyphenols with serum total antioxidant capacity (TAC) in 749 European adolescents (53% girls; 15% overweight; 12.5-17.5 years-old) from the cross-sectional HELENA study of 2006-2007. Dietary polyphenol intake was calculated from two non-consecutive 24-h recalls matched with the Phenol-Explorer database. Multilevel linear models examined the associations between dietary polyphenols and TAC. Polyphenol intake was rather low (median = 321mg/day; p25 = 158; p75 = 536) and TAC was comparable to other literature findings (median = 1.57 mmol/L; p25 = 1.45; p75 = 1.74). Total polyphenol intake, polyphenol classes and the top 10 compounds were not associated with TAC in a linear, quadratic or cubic way in partially or fully confounder-adjusted models. A direct anti-oxidative effect of dietary polyphenol intake was not observed in European adolescents. Polyphenol biomarkers and addnl. antioxidant measures are needed in future prospective studies to confirm these results. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Computed Properties of C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Computed Properties of C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts