Chen, Jia-Qian et al. published their research in Chinese Medicine (London, United Kingdom) in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Reference of 29106-49-8

Fuzzy identification of bioactive components for different efficacies of rhubarb by the back propagation neural network association analysis of UPLC-Q-TOF/MSE and integrated effects was written by Chen, Jia-Qian;Chen, Yan-Yan;Du, Xia;Tao, Hui-Juan;Pu, Zong-Jin;Shi, Xu-Qin;Yue, Shi-Jun;Zhou, Gui-Sheng;Shang, Er-Xin;Tang, Yu-Ping;Duan, Jin-Ao. And the article was included in Chinese Medicine (London, United Kingdom) in 2022.Reference of 29106-49-8 The following contents are mentioned in the article:

Rhei Radix et Rhizoma (rhubarb), as one of the typical representatives of multi-effect traditional Chinese medicines (TCMs), has been utilized in the treatment of various diseases due to its multicomponent nature. However, there are few systematic investigations for the corresponding effect of individual components in rhubarb. Hence, we aimed to develop a novel strategy to fuzzily identify bioactive components for different efficacies of rhubarb by the back propagation (BP) neural network association anal. of ultra-performance liquid chromatog./quadrupole time-of-flight mass spectrometry for every data (UPLC-Q-TOF/MSE) and integrated effects. Through applying the fuzzy chem. identification, most components of rhubarb were classified into different chem. groups. Meanwhile the integration effect values of different efficacies can be determined by animal experiment evaluation and multi-attribute comprehensive indexes. Then the BP neural network was employed for association anal. of components and different efficacies by correlating the component contents determined from UPLC-Q-TOF/MSE profiling and the integration effect values. Finally, the effect contribution of one type of components may be totaled to demonstrate the universal and individual characters for different efficacies of rhubarb. It suggested that combined anthraquinones, flavanols and their polymers may be the universal character to the multi-functional properties of rhubarb. Other components contributed to the individuality of rhubarb efficacies, including stilbene glycosides, anthranones and their dimers, free anthraquinones, chromones, gallic acid and gallotannins, butyrylbenzenes and their glycosides. Our findings demonstrated that the bioactive components for different efficacies of rhubarb were not exactly the same and can be systematically differentiated by the network-oriented strategy. These efforts will advance our knowledge and understanding of the bioactive components in rhubarb and provide scientific evidence to support the expansion of its use in clin. applications and the further development of some products based on this medicinal herb. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Reference of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Reference of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Chuanping et al. published their research in Food & Function in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Electric Literature of C30H26O12

Beneficial effects of procyanidin B2 on adriamycin-induced nephrotic syndrome mice: the multi-action mechanism for ameliorating glomerular permselectivity injury was written by Zhao, Chuanping;Tang, Jiamei;Li, Xiaoya;Yan, Zihan;Zhao, Liangliang;Lang, Wenbo;Yuan, Chunmao;Zhou, Chengyan. And the article was included in Food & Function in 2022.Electric Literature of C30H26O12 The following contents are mentioned in the article:

Despite considerable advances in prevention, diagnosis, and therapy, nephrotic syndrome (NS) remains a significant cause of high morbidity and mortality globally. As a result, there is an urgent need to identify novel effective preventative and therapeutic agents for NS. NS is implicated in glomerular permselectivity injury, which can be attributed to oxidative distress, inflammation, lipid nephrotoxicity, podocyte apoptosis, autophagy dysfunction, and slit diaphragm (SLD) dysfunction. In addition to its well-documented antioxidant potency, procyanidin B2 (PB2) may exhibit pleiotropic effects by targeting various canonical signaling events, such as NF-κB, PPARs, PI3K/Akt, mTOR, and the caspase family. As a result, PB2 may be a promising therapeutic target against NS. To test this hypothesis, we established an Adriamycin (ADR)-induced NS mouse model to evaluate the pleiotropic renoprotective effects of PB2 on NS. Here, we demonstrated that PB2 improves podocyte injury via inhibition of NOX4/ROS and Hsp90/NF-κB to exhibit antioxidant and anti-inflammatory potency, resp. We also show that PB2 indirectly activates the PI3K/Akt axis by regulating SLD protein levels, resulting in normalized podocyte apoptosis and autophagy function. Further, loss of albumin (ALB) induces lipid nephrotoxicity, which we found to be alleviated by PB2 via activation of PPARα/β-mediated lipid homeostasis and the cholesterol efflux axis. Interestingly, our results also suggested that PB2 reduces electrolyte abnormalities and edema. In addition, PB2 may contribute protective effects against trace element dys-homeostasis, which, through alleviating serum ALB loss, leads to a protective effect on glomerular permselectivity injury. Taken together, our results reveal that the identified mechanisms of PB2 on NS are multifactorial and involve inhibition of oxidative distress and inflammatory responses, as well as improvements in podocyte apoptosis and autophagy dysfunction, amelioration of lipid nephrotoxicity, and modulation of electrolyte abnormalities and edema. Thus, we provide a theor. basis for the clin. application of PB2 against NS. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Electric Literature of C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Electric Literature of C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Jing et al. published their research in Cell Death & Disease in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.SDS of cas: 29106-49-8

Mitochondrial PKM2 deacetylation by procyanidin B2-induced SIRT3 upregulation alleviates lung ischemia/reperfusion injury was written by Zhao, Jing;Wang, Guorong;Han, Kaitao;Wang, Yang;Wang, Lin;Gao, Jinxia;Zhao, Sen;Wang, Gang;Chen, Shengyang;Luo, An;Wu, Jianlin;Wang, Guangzhi. And the article was included in Cell Death & Disease in 2022.SDS of cas: 29106-49-8 The following contents are mentioned in the article:

Abstract: Apoptosis is a critical event in the pathogenesis of lung ischemia/reperfusion (I/R) injury. Sirtuin 3 (SIRT3), an important deacetylase predominantly localized in mitochondria, regulates diverse physiol. processes, including apoptosis. However, the detailed mechanisms by which SIRT3 regulates lung I/R injury remain unclear. Many polyphenols strongly regulate the sirtuin family. In this study, we found that a polyphenol compound, procyanidin B2 (PCB2), activated SIRT3 in mouse lungs. Due to this effect, PCB2 administration attenuated histol. lesions, relieved pulmonary dysfunction, and improved the survival rate of the murine model of lung I/R injury. Addnl., this treatment inhibited hypoxia/reoxygenation (H/R)-induced A549 cell apoptosis and rescued Bcl-2 expression. Using Sirt3-knockout mice and specific SIRT3 knockdown in vitro, we further found that SIRT3 strongly protects against lung I/R injury. Sirt3 deficiency or enzymic inactivation substantially aggravated lung I/R-induced pulmonary lesions, promoted apoptosis, and abolished PCB2-mediated protection. Mitochondrial pyruvate kinase M2 (PKM2) inhibits apoptosis by stabilizing Bcl-2. Here, we found that PKM2 accumulates and is hyperacetylated in mitochondria upon lung I/R injury. By screening the potential sites of PKM2 acetylation, we found that SIRT3 deacetylates the K433 residue of PKM2 in A549 cells. Transfection with a deacetylated mimic plasmid of PKM2 noticeably reduced apoptosis, while acetylated mimic transfection abolished the protective effect of PKM2. Furthermore, PKM2 knockdown or inhibition in vivo significantly abrogated the antiapoptotic effects of SIRT3 upregulation. Collectively, this study provides the first evidence that the SIRT3/PKM2 pathway is a protective target for the suppression of apoptosis in lung I/R injury. Moreover, this study identifies K433 deacetylation of PKM2 as a novel modification that regulates its anti-apoptotic activity. In addition, PCB2-mediated modulation of the SIRT3/PKM2 pathway may significantly protect against lung I/R injury, suggesting a novel prophylactic strategy for lung I/R injury. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8SDS of cas: 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.SDS of cas: 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Peng, Fei et al. published their research in Journal of Ethnopharmacology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Formula: C30H26O12

Anti-inflammatory effect of flavonoids from chestnut flowers in lipopolysaccharide-stimulated RAW 264.7 macrophages and acute lung injury in mice was written by Peng, Fei;Yin, Hongyang;Du, Bin;Niu, Kui;Yang, Yuedong;Wang, Shujun. And the article was included in Journal of Ethnopharmacology in 2022.Formula: C30H26O12 The following contents are mentioned in the article:

Chestnut flowers were one of the byproducts during chestnut industrial processing. Chestnut (Castanea mollissima Blume) flower is rich in flavonoids and has been used as a traditional medicine to treat a variety of diseases including respiratory disorders for a long history. The present study aims to investigate the potential anti-inflammatory effect of flavonoids from chestnut flower (FCF) in lipopolysaccharide (LPS)-treated RAW 264.7 cells and stimulated acute lung injury (ALI) in mice. HPLC-ESI-MS/MS was applied to identify flavonoids from Chestnut flower. The ROS content in cells and lung tissue was measured by flow cytometry. The malondialdehyde (MDA) content, superoxide dismutase (SOD) activity and glutathione (GSH) content in cells and bronchoalveolar lavage fluid (BALF) was analyzed by photometry. Furthermore, the level of pro-inflammatory factors was analyzed by ELISA, and the expression of inflammatory gene mRNA by fluorescence quant. PCR. H&E staining was used to evaluate the degree of lung tissue injury in mice. MPO activity was used to measure the degree of neutrophil infiltration. Total protein content was detected by BCA method. A total of forty-nine flavonoids compounds were tentatively identified in FCF by mass spectrometry anal. The results of cell experiment suggested that FCF could alleviate oxidative injury via increasing SOD activity and GSH content, as well as inhibiting the production of intracellular ROS and MDA. FCF exerted its protective effect by suppressing the expression of both inducible nitric oxide synthase (iNOS) and cycooxygenase 2 (COX-2) to inhibit the synthesis of pro-inflammatory factors and cytokines, including NO, PGE2, TNF-α, IL-6 and IL-1β. Besides, FCF treatment could alleviate the thickening of alveolar wall and pulmonary congestion in LPS-treated ALI mice, and significantly inhibit the activity of myeloperoxidas (MPO) and the expression of cytokines in BALF. FCF could ameliorate inflammation and oxidative stress in LPS-treated inflammation, resulting in an overall improvement in both macroscopic and histol. parameters. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Formula: C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Formula: C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Lei et al. published their research in Pharmacological Research in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Procyanidin B2 ameliorates endothelial dysfunction and impaired angiogenesis via the Nrf2/PPAR γ/sFlt-1 axis in preeclampsia was written by Liu, Lei;Wang, Rencheng;Xu, Ran;Chu, Yuening;Gu, Weirong. And the article was included in Pharmacological Research in 2022.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

Preeclampsia is a severe complication of pregnancy characterised by variable degrees of placental malperfusion. A growing body of evidence indicates that soluble endoglin and soluble fms-like tyrosine kinase-1 (sFlt-1) play important pathophysiol. roles in preeclampsia, causing endothelial dysfunction, hypertension, and multiorgan injury. A drug that is safe in pregnancy and inhibits placental sFlt-1 and soluble endoglin secretion would be an attractive treatment strategy for preeclampsia. Procyanidin B2, a bioactive food compound, has been reported to exert multiple beneficial functions. Placental explant cultures in vitro are useful for studying tissue functions including release of secretory components, pharmacol., toxicol., and disease processes. The reduced uterine perfusion pressure (RUPP) rat model has been widely used as a model of preeclampsia. We aimed to investigate the effect of procyanidin B2 on preeclampsia via using placental explant cultures and RUPP rat model. In this study, we demonstrated that procyanidin B2 reduced soluble endoglin and sFlt-1 secretion from human umbilical vein endothelial cells (HUVECs), primary trophoblasts, and placental explants from preeclamptic pregnancies. Moreover, procyanidin B2 alleviated endothelial dysfunction and impaired angiogenesis induced by sFlt-1, including increasing the migration, invasion and angiogenesis of endothelial cells and decreasing the expression of vascular cell adhesion mol.-1 (VCAM-1) and leukocyte adhesion on HUVECs. In addition, procyanidin B2 promoted nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear accumulation and induced peroxisome proliferator-activated receptor γ (PPAR γ) expression in primary placental tissues and endothelial cells. Importantly, Nrf2 specifically binds to the PPARγ promoter region (-1227/-1217) and enhances its transcriptional activity. Procyanidin B2 inhibits sFlt-1 secretion via the Nrf2/PPARγ axis. In the RUPP rat model of preeclampsia, procyanidin B2 attenuated RUPP-induced maternal angiogenic imbalance, hypertension and improved placental and fetal weight Taken together, our results demonstrate that procyanidin B2 inhibits sFlt-1 secretion and ameliorates endothelial dysfunction and impaired angiogenesis via the Nrf2/PPAR γ axis in preeclampsia. Procyanidin B2 may be a novel therapeutic agent for treatment of preeclampsia. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Recommanded Product: (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Longhi, Sara Jaquelina et al. published their research in Food Research International in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: 29106-49-8

Different approaches to supplement polysaccharide-degrading enzymes in vinification: Effects on color extraction, phenolic composition, antioxidant activity and sensory profiles of Malbec wines was written by Longhi, Sara Jaquelina;Martin, Maria Carolina;Fontana, Ariel;de Ambrosini, Vilma Ines Morata. And the article was included in Food Research International in 2022.Recommanded Product: 29106-49-8 The following contents are mentioned in the article:

Enzymes play an essential role in the winemaking process. Besides an improvement in the color of the wine it also enhances the quality, which makes it well worth to develop new strategies of application. The present study examined two approaches to apply microbial enzymes during different winemaking techniques using Malbec grapes from the San Rafael wine region, Mendoza, Argentina. i) Torulaspora delbrueckii was used in sequential inoculation with an autochthonous Saccharomyces cerevisiae strain. The former strain was first inoculated to produce in situ an enzyme complex during winemaking for four days, and subsequently the latter strain was added. The process was carried out under traditional winemaking conditions at 22 °C (Td-Sc). ii) A second approach was through inoculation of a multi-enzyme extract produced by Aureobasidium pullulans m11-2 during pre-fermentative cold maceration (PCM) for four days at 8 °C (PCM-E), and S. cerevisiae was inoculated at the end of the PCM. Controls were carried out without enzymic treatments (Sc and PMC, resp.). T. delbrueckii started the fermentation and remained viable throughout the process. The fermentation kinetics were not affected in the mixed culture compared with a pure culture of S. cerevisiae. Monitoring of the pectinolytic activity of Td-Sc showed maximum activity (14.2 U mg-1) on day one of the inoculation, while in PCM-E the must activity increased during the PCM until day one of fermentation, reaching a maximum of 16.85 U mg-1. Both enzyme-treated wines maintained their red hue, regardless of the duration of the macerations, while the control wines were characterized by a faster rate of color loss and more yellow tones. In the sensory evaluation, enzymically treated wines presented greater color intensity, redder and more violet tones, floral and fruit aromas, which are also the distinctive features of the Malbec variety. Anthocyanin values obtained in PCM and in PCM-E were higher than in vinifications without cold maceration (Td-Sc and Sc), which could be attributed to the effectiveness of the maceration technique. Similarly, the composition of stilbenes, especially trans-resveratrol, showed an increase in PCM techniques with or without enzymic treatment, and both techniques were comparable to one other and statistically superior to traditional winemaking. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Recommanded Product: 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Recommanded Product: 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Qiao, Qian et al. published their research in Plant Physiology and Biochemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Product Details of 29106-49-8

Transcriptome sequencing and flavonoid metabolism analysis in the leaves of three different cultivars of Acer truncatum was written by Qiao, Qian;Si, Fenfen;Wu, Chong;Wang, Jiangyong;Zhang, Anning;Tao, Jihan;Zhang, Lin;Liu, Yan;Feng, Zhen. And the article was included in Plant Physiology and Biochemistry in 2022.Product Details of 29106-49-8 The following contents are mentioned in the article:

Young and mature leaves of three Acer truncatum varieties with different leaf colors were examined Transcriptome sequencing and flavonoid metabolism were used to analyze the differential gene expression associated with different leaf colors and growth stages and the relationships between gene expression and flavonoid and anthocyanin contents to improve ornamental value and develop flavonoid-rich A. truncatum. Kyoto Encyclopedia of Genes and Genomes database annotation of differentially expressed genes indicated that the following genes were related to flavonoid synthesis: phenylpropanoid biosynthesis genes (PAL, C4H, 4CL and CHS), flavonoid biosynthesis genes (E2.1.1.104, CHI, FLS, F3’5’H and ANR), anthocyanin biosynthesis genes (ANS, DFR, HCT, BZ1, GT1, and UGT79B1), isoflavonoid biosynthesis genes (HIDH and CYP81E17), and their transcriptional regulator (MYB). A total of 234 types of flavonoids were detected. The types and contents of anthocyanins in the red-leaf varieties ‘Hong Jingling’ and ‘Caidie Fanfei’ were significantly higher than those in the green leaf cultivar ‘Lv Baoshi’, especially morning glory 3-O-glucoside, delphinidin 3-O-glucoside, and pelargonium-3-O-glucoside, which were not detected in ‘Lv Baoshi’. Combined omics anal. showed that downregulated expression of C4H, CHS and F3’5’H and upregulated expression of FLS reduced the supply of raw materials for anthocyanin synthesis, and downstream ANR upregulation converted anthocyanins to procyanidins, increasing the total flavonoid content. F3’5’H expression was downregulated in the leaves of each variety with development, resulting in the accumulation of catechins and the gradual greening of the leaves. F3’5’H was significantly depleted in the young leaves of ‘Hong Jingling’ and ‘Caidie Fanfei’ compared with the young leaves of ‘Lv Baoshi’, while ANS and BZ1 were enriched significantly. It is concluded that F3’5’H, BZ1, and ANS are the key genes needed for breeding red A. truncatum and that ANR is the key gene needed for breeding varieties with a high flavonoids contens. These results may facilitate genetic modification or selection for further improvement of the ornamental qualities and flavonoid content of A. truncatum. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Product Details of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Product Details of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Njiru, Christine et al. published their research in BMC Biology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C30H26O12

Intradiol ring cleavage dioxygenases from herbivorous spider mites as a new detoxification enzyme family in animals was written by Njiru, Christine;Xue, Wenxin;De Rouck, Sander;Alba, Juan M.;Kant, Merijn R.;Chruszcz, Maksymilian;Vanholme, Bartel;Dermauw, Wannes;Wybouw, Nicky;Van Leeuwen, Thomas. And the article was included in BMC Biology in 2022.COA of Formula: C30H26O12 The following contents are mentioned in the article:

Generalist herbivores such as the two-spotted spider mite Tetranychus urticae thrive on a wide variety of plants and can rapidly adapt to novel hosts. What traits enable polyphagous herbivores to cope with the diversity of secondary metabolites in their variable plant diet is unclear. Genome sequencing of T. urticae revealed the presence of 17 genes that code for secreted proteins with strong homol. to “intradiol ring cleavage dioxygenases (DOGs)” from bacteria and fungi, and phylogenetic analyses show that they have been acquired by horizontal gene transfer from fungi. In bacteria and fungi, DOGs have been well characterized and cleave aromatic rings in catecholic compounds between adjacent hydroxyl groups. Such compounds are found in high amounts in solanaceous plants like tomato, where they protect against herbivory. To better understand the role of this gene family in spider mites, we used a multi-disciplinary approach to functionally characterize the various T. urticae DOG genes. We confirmed that DOG genes were present in the T. urticae genome and performed a phylogenetic reconstruction using transcriptomic and genomic data to advance our understanding of the evolutionary history of spider mite DOG genes. We found that DOG expression differed between mites from different plant hosts and was induced in response to jasmonic acid defense signaling. In consonance with a presumed role in detoxification, expression was localized in the mites gut region. Silencing selected DOGs expression by dsRNA injection reduced the mites survival rate on tomato, further supporting a role in mitigating the plant defense response. Recombinant purified DOGs displayed a broad substrate promiscuity, cleaving a surprisingly wide array of aromatic plant metabolites, greatly exceeding the metabolic capacity of previously characterized microbial DOGs. Our findings suggest that the laterally acquired spider mite DOGs function as detoxification enzymes in the gut, disarming plant metabolites before they reach toxic levels. We provide exptl. evidence to support the hypothesis that this proliferated gene family in T. urticae is causally linked to its ability to feed on an extremely wide range of host plants. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8COA of Formula: C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Liu, Xinnan et al. published their research in Journal of Ethnopharmacology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Formula: C30H26O12

Effectiveness of the fruit of Rosa odorata sweet var. gigantea (Coll. et Hemsl.) Rehd. et Wils in the protection and the healing of ethanol-induced rat gastric mucosa ulcer based on Nrf2/NF-κB pathway regulation was written by Liu, Xinnan;Quan, Shuai;Han, Qiaqia;Li, Jingyang;Gao, Xiaoxia;Zhang, Jingze;Liu, Dailin. And the article was included in Journal of Ethnopharmacology in 2022.Formula: C30H26O12 The following contents are mentioned in the article:

Rosa odorata Sweet var. gigantea (Coll. et Hemsl.) Rehd. et Wils (Rosaceae), is also known as “GU-GONG-GUO”, the root of which has been recognized as common ethnodrug from the Yi nationality for treating inflammatory bowel disease. The aim of the present study was to investigate the preventive and curative effects of extract from the fruits of Rosa odorata Sweet var. gigantea (Coll.et Hemsl.) Rehd. et Wils (FOE) in vitro and in vivo as well as elucidate the potential mechanisms of the action involved. Male Wistar rats were applied to ethanol-induced gastric ulcer model. They were divided into six groups: control, model (GU), pos. (Magnesium aluminate chewable tablets, 125 mg/kg), FOE low (125 mg/kg), middle (250 mg/kg) and high (500 mg/kg) doses groups. Histopathol. observation of gastric tissues was detected by hematoxylin and eosin (H&E) staining. The expression of Nrf2, HO-1, Keap1, NF-κB p65 and IKKα/β in gastric tissues were evaluated by immunohistochem. (IHC). The levels of cytokines in serum and tissues were measured by ELISA (ELISA). The expression of Nrf2, HO-1, Keap1, NF-κB p65, IKKα/β, PCNA and COX2 proteins were ulteriorly assessed by Western blotting to elucidate the mol. mechanism of FOE′s protective effect on gastric ulcer. MTT detection showed that LPS reduced RAW264.7 cell survival, and FOE blocked the inhibition of RAW264.7 cell growth induced by LPS. When RAW264.7 cells were treated with both FOE (100 μg mL-1) and LPS (5 μg mL-1) for 24 h, compared with the model group, the level of NO, TNF-α, IL-6, IL-1β and MDA significantly decreased, and the activity of SOD was significantly reduced. Obvious pathol. injuries in the GU model group were observed, which was improved after treatments with FOE. The contents of pro-inflammatory factors in serum and tissues were decreased by 25% whereas prostaglandin E2 (PGE2) and epidermal growth factor (EGF) were increased by 30% in a dose-dependent manner after FOE (500 mg/kg) treatments. In addition to the promotion effects of superoxide dismutase (SOD), FOE (500 mg/kg) also attenuated the levels of nitric oxide (NO) and malondialdehyde (MDA) by 20%. Likewise, the expression of NF-κB p65, IKKα/β and Keap1 were suppressed after treatments with FOE whereas Nrf2 and HO-1 showed the opposite trend, which mechanisms were found to be associated with Nrf2/NF-κB signaling pathways. The study demonstrated that FOE is able to protect against GU via inhibiting NF-κB signaling pathway and activating Nrf2 signaling pathway, which might provide a stronger theor. basis for the treatment of GU. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Formula: C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Formula: C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhang, Ying et al. published their research in Journal of Food Biochemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Integrated LC-MS / MS method and network pharmacology for exploring the characterization and mechanism of neuroprotective effect of Vitis amurensis Rupr. wine polyphenol was written by Zhang, Ying;Yuan, Danbing;Guo, Jianyu;Jiang, Jing;Yao, Haoran;Chen, Zhongling;Li, Lingxi;Cui, Yan. And the article was included in Journal of Food Biochemistry in 2022.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

Polyphenols are the main active components in Vitis amurensis Rupr. wine, which show good protective effects on the nervous system, but their compositions in Vitis amurensis Rupr. wine and the mol. mechanism underlying their neuroprotection remains unclear. The purpose of this study is to investigate the potential mechanism of the neuroprotective effect of Vitis amurensis Rupr. wine polyphenols on the basis of the specific composition of polyphenols in Vitis amurensis Rupr. wine. In this study, 40 phenolic compounds which include 15 anthocyanins, 10 flavonoids, 10 phenolic acids, 3 proanthocyanidins and 2 resveratrols were identified by UPLC Q-Exactive Orbitrap MS. Furthermore, An UPLC-QqQ/MS method was established to simultaneously determine the phenolic compounds in Vitis amurensis Rupr. Wine, and analyze the content differences of phenolic compounds between Vitis amurensis Rupr. and Vitis vinifera wine. Finally, network pharmacol. was employed for the first time to predict the possible pharmacol. mechanisms of Vitis amurensis wine polyphenols against nervous damage. Multivariate network anal. indicated that quercetin, (-)-epigallocatechin and various anthocyanins were found as prominent compounds for the treatment of nervous system diseases. Vitis amurensis Rupr. wine polyphenols mainly acted on these key targets, including AKT1, EGFR, ESR1, and SRC, and further regulate the PI3K-AKT and Rap1 signaling pathway for treating nervous system diseases. Our findings suggested that polyphenols in Vitis amurensis Rupr. wine possess neuroprotective effect through multicomponent, multitarget, and multichannel. Practical applications : Studies have revealed that Vitis amurensis Rupr. has higher levels of phenolic compounds than Vitis vinifera wine. However, due to the few and limited study of Vitis amurensis Rupr., their compositions in Vitis amurensis Rupr. wine and the mol. mechanism underlying their neuroprotection remains unclear. This research uses a holistic network pharmacol. strategy to investigate the potential targets and pharmacol. mechanisms of Vitis amurensis Rupr. wine polyphenols against nervous damage. To some things up, The finding elucidates the relationships between signaling pathways, targets, and compounds in Vitis amurensis Rupr. wine polyphenols, which may provide guidance and foundations for further application of medicinal food. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts