Suwa, Yudai et al. published their research in Tetrahedron in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Product Details of 29106-49-8

Structure determination and formation mechanism of procyanidin B2 oxidation products was written by Suwa, Yudai;Yanase, Emiko. And the article was included in Tetrahedron in 2022.Product Details of 29106-49-8 The following contents are mentioned in the article:

Procyanidins B2 and B1 were chem. oxidized to clarify the chem. changes in procyanidins upon oxidation Four compounds were structurally determined and could be produced using different oxidation methods, including enzymic oxidation with polyphenol oxidase. In the case of procyanidin B2, the different ratios of oxidized products formed in water compared with organic solvents are attributed to the procyanidin solvent-dependent conformational differences. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Product Details of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Product Details of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sun, Ya-Sai et al. published their research in Current Research in Food Science in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Safety of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Proanthocyanidin oligomers extract from hawthorn mediates cell cycle arrest, apoptosis, and lysosome vacuolation on HCT116 cells was written by Sun, Ya-Sai;Wang, Zi-Wei;Gao, Zhe;Zhao, Wen;Thakur, Kiran;Zhong, Qian;Wei, Zhao-Jun. And the article was included in Current Research in Food Science in 2022.Safety of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

In this study, Hawthorn oligomic procyanidins extracts (HPOE) were evaluated for their anticancer activity on colorectal cancer. Our results showed that HPOE arrested HCT116 cells cycle at G2/M phase through P53-Cyclin B pathway and promoted apoptosis partly via mitochondrial (Caspase 9-Caspase 3) and death receptor (Caspase 8-Caspase 3) pathways. Meanwhile, it was found that HPOE aggravated HCT116 cells death through lysosomal vacuolation, which was verified by inhibitor/activator of P53-ILC3 signaling pathway. Taken together, HPOE exerted anticancer effects which lays the foundation for the development of functional foods for clin. colon cancer patients. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Safety of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Safety of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Huang, Yanyi et al. published their research in International Journal of Food Science and Technology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Product Details of 29106-49-8

The influence of the fortification of red pitaya (Hylocereus polyrhizus) powder on the in vitro digestion, physical parameters, nutritional profile, polyphenols and antioxidant activity in the oat-wheat bread was written by Huang, Yanyi;He, Mengya;Kasapis, Stefan;Brennan, Margaret;Brennan, Charles. And the article was included in International Journal of Food Science and Technology in 2022.Product Details of 29106-49-8 The following contents are mentioned in the article:

This study evaluated the phys. parameters, polyphenol profile and antioxidant activity before and after the in vitro digestion of red pitaya powder-enriched oat-wheat bread compared to plain wheat bread, oat-wheat bread and red pitaya powder. The enrichment of red pitaya powder significantly increased the polyphenol, mineral contents, insoluble dietary fiber, firmness and moisture content of oat-wheat bread compared to wheat bread, while contributed to a minor reduction in bread volume and dough extensibility due to gluten dilution The oat-wheat bread was found to have the lowest predicted glycemic response, but 5%, 10% and 15% red pitaya powder formulated oat-wheat bread showed a significantly lower glycemic response than plain wheat bread as well as red pitaya powder. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Product Details of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Product Details of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xu, Meng et al. published their research in Animal Biotechnology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Safety of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Procyanidin B2 induces porcine skeletal slow-twitch myofiber gene expression by AMP-activated protein kinase signaling pathway was written by Xu, Meng;Chen, Xiaoling;Huang, Zhiqing;Chen, Daiwen;Yu, Bing;He, Jun;Chen, Hong;Yu, Jie;Luo, Yuheng;Zheng, Ping. And the article was included in Animal Biotechnology in 2022.Safety of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:

In this study, our aim is to investigate the effect of dimer procyanidin B2 [epicatechin-(4β-8)-epicatechin] (PB2) on porcine skeletal myofiber gene expression in vitro. Our data showed PB2 promoted the protein expression of slow myosin heavy chain (MyHC) in porcine myotubes, concomitant with the increases in mRNA levels of MyHC I, MyHC IIa and Tnni1. We also found PB2 activated AMPK signaling in porcine myotubes. NRF1 and CaMKKβ that are two important upstream factors of AMPK, and Sirt1 and PGC-1α that are two major downstream factors of AMPK, were also up-regulated by PB2. The mechanism study showed the effect of PB2 on slow-twitch myofiber gene expression was abolished by AMPK inhibitor compound C or by AMPKα1 siRNA. Together, we found PB2 induced porcine skeletal slow-twitch myofiber gene expression by AMPK signaling pathway. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Safety of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Safety of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Haonan et al. published their research in Scientific Reports in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Electric Literature of C30H26O12

Traditional Chinese medicine extracts as novel corrosion inhibitors for AZ91 magnesium alloy in saline environment was written by Li, Haonan;Fan, Min;Wang, Kui;Bian, Xiaolan;Jiang, Haiyan;Ding, Wenjiang. And the article was included in Scientific Reports in 2022.Electric Literature of C30H26O12 The following contents are mentioned in the article:

Zingiber officinale Roscoe extract, Raphanus sativus L. extract, Rheum palmatum extract, Coptis chinensis extract, Glycyrrhiza uralensis extract (GUE), Potentilla discolor extract (PDE) and Taraxacum officinale extract (TOE) were screened for the green corrosion inhibitors of AZ91 alloy in saline environment. The experiment results demonstrated that GUE, PDE and TOE can significantly enhance the corrosion resistance of AZ91 alloy by 73.4, 87.6 and 84.6%, resp. Surface characterization using FTIR, UV-Vis and XPS revealed that the organic compounds of GUE, PDE and TOE can interact with the alloy surface to form a protective physisorbed film, effectively mitigating the corrosion process of AZ91 alloy. The present results may be helpful to discover the new green inhibitors with high inhibition efficiency for AZ91 alloy. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Electric Literature of C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Electric Literature of C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Mayasari, Dian et al. published their research in Journal of Natural Products in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Reference of 29106-49-8

TLC-Based Fingerprinting Analysis of the Geographical Variation of Melastoma malabathricum in Inland and Archipelago Regions: A Rapid and Easy-to-Use Tool for Field Metabolomics Studies was written by Mayasari, Dian;Murti, Yosi Bayu;Pratiwi, Sylvia Utami Tunjung;Sudarsono, Sudarsono;Hanna, George;Hamann, Mark T.. And the article was included in Journal of Natural Products in 2022.Reference of 29106-49-8 The following contents are mentioned in the article:

Melastoma malabathricum is an Indo-Pacific herb that has been used traditionally to treat numerous ailments such as wounds, dysentery, diarrhea, toothache, and diabetes. The objective of this study was to evaluate the variability of the metabolic profiles of M. malabathricum across its geog. distribution. By employing thin layer chromatog. (TLC), specimens collected from six terrestrial and archipelago regions of Indonesia were analyzed by densitometry for metabolomic fingerprinting anal. combined with chemometric tools: principal component anal. (PCA) and hierarchical cluster anal. (HCA). Two PCAs were identified as PC1 and PC2 with 41.90% and 20.36%, resp. Our results indicate the importance of considering geog. distribution during field-collection efforts since they demonstrate regional metabolic variation in secondary metabolites of M. malabathricum, as illustrated by TLC and their biol. activities. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Reference of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Reference of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yan, Bei et al. published their research in Journal of Agricultural and Food Chemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Application of 29106-49-8

Preventive Effect of Apple Polyphenol Extract on High-Fat Diet-Induced Hepatic Steatosis in Mice through Alleviating Endoplasmic Reticulum Stress was written by Yan, Bei;Chen, Lei;Wang, Yanhui;Zhang, Jiacheng;Zhao, Hui;Hua, Qinglian;Pei, Shengjie;Yue, Zihang;Liang, Hui;Zhang, Huaqi. And the article was included in Journal of Agricultural and Food Chemistry in 2022.Application of 29106-49-8 The following contents are mentioned in the article:

In this work, the protective effect of apple polyphenol extract (APE) on hepatic steatosis was investigated. Thirty-two C57BL/6J mice were assigned randomly to control group, hepatic steatosis group, lovastatin group, and APE group. After 8 wk of intervention, APE supplementation markedly decreased the body weight gain, liver weight, liver index, epididymal adipose weight, epididymal adipose index, serum, and hepatic lipid levels. Hematoxylin and eosin staining revealed that APE supplementation alleviated histopathol. changes of hepatic steatosis. Western blot revealed that APE downregulated the protein levels of GRP78, IRE1α, p-IRE1α, XBP1, PERK, p-PERK, p-eIF2α, ATF6, PPAR-γ, SREBP-1c, FAS, and ACC1. In conclusion, this study found that APE inhibited IRE1α-XBP1, PERK-eIF2α, and ATF6 signaling pathways to alleviate endoplasmic reticulum stress, thereby improving HFD-induced hepatic steatosis. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Application of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Application of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Horinishi, Asako et al. published their research in ACS Food Science & Technology in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Related Products of 29106-49-8

Changes in Proanthocyanidin Content during the Processing of Umeshu, a Spirit-Based Liqueur of Japanese Apricot (Prunus mume Sieb. et Zucc.) Fruit was written by Horinishi, Asako;Toyama, Yoshimasa;Watanabe, Minoru;Ayano, Shigeru;Ozaki, Yoshihiko. And the article was included in ACS Food Science & Technology in 2022.Related Products of 29106-49-8 The following contents are mentioned in the article:

Japanese apricot (Prunus mume Sieb. et.Zucc.), also known as Ume, is used as a food item and a folk remedy in most east Asian countries, including Japan. Umeshu is a liqueur made from Ume and is one of the most popular products obtained from this fruit. The polyphenols (PPs) and proanthocyanidins (PAs) present in Umeshu and the residual fruit obtained post immersion were analyzed. We are the first to report the characteristics of the phenolic compounds obtained during the processing of Umeshu. The concentration of PA in Umeshu was approx. 16μg/mL, and this concentration was significantly lower than the concentrations of PA present in other liqueurs. It is believed that most of the PAs contained in Umeshu leach out from the endocarp. The total amounts of extractable PAs decreased, and the total amounts of nonextractable PAs increased in Umeshu and the residual fruit during the processing stage. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Related Products of 29106-49-8).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Related Products of 29106-49-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Xiaowei et al. published their research in Food Research International in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Computed Properties of C30H26O12

Evaluating the changes in phytochemical composition, hypoglycemic effect, and influence on mice intestinal microbiota of fermented apple juice was written by Wang, Xiaowei;Wang, Yaqin;Han, Mengzhen;Liang, Jingjing;Zhang, Meina;Bai, Xue;Yue, Tianli;Gao, Zhenpeng. And the article was included in Food Research International in 2022.Computed Properties of C30H26O12 The following contents are mentioned in the article:

Apples are rich in phenolic antioxidants, which have various beneficial effects on human health. The purposes of our study were to evaluate the effects of Lactobacillus fermentum 21828 fermentation on the phytochem. composition and bioactivity of Aksu (Fuji) apple juice (AJ), and to evaluate the hypoglycemic effect of fermented AJ (FAJ) and its effect on intestinal flora. Fermentation altered the phytochem. and enhanced the biol. activity (hypoglycemic and antioxidant activities) of AJ. FAJ improved fasting blood glucose and insulin levels in diabetic mice, regulated blood lipid metabolism, reduced oxidative damage, restored damaged islet cells, and reshaped the intestinal flora of diabetic mice by increasing the relative abundance of Actinobacteria, Bifidobacteria, and Faecalibaculum. The results indicate that FAJ is a fermented product that is rich in bioactive components and has potential hypoglycemic and antioxidant activities. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Computed Properties of C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Computed Properties of C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Korpela, Bei et al. published their research in Food Chemistry in 2022 | CAS: 29106-49-8

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C30H26O12

Enzymatic modification of oat globulin enables covalent interaction with procyanidin B2 was written by Korpela, Bei;Pitkanen, Leena;Heinonen, Marina. And the article was included in Food Chemistry in 2022.COA of Formula: C30H26O12 The following contents are mentioned in the article:

The effect of enzyme treatment on protein-tannin interactions was investigated using up-to-date anal. approaches for improving their phys. properties. The formation of ligands between procyanidin B2 and native oat globulin (OG) was observed to be affected by the ratio of procyanidin B2 to OG and the availability of tryptophan. For the transglutaminase-treated OG, the results obtained from CD (CD) and size exclusion chromatog. (SEC) revealed that procyanidin B2 acted as an acyl acceptor in the process of OG deamidation. Procyanidin B2 also inhibited the non-covalent protein-protein interactions occurring between the aromatic side-chains or sedimentation of tryptophan aggregates. For trypsin-treated OG, procyanidin B2 interacted with phenylalanine and the tryptophan side-chain of OG. The inhibition of procyanidin B2 towards protein-protein aggregation was proved by the observation of CD, SEC and asym. flow field-flow fractionation. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8COA of Formula: C30H26O12).

(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C30H26O12

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts