Stambuk, Petra et al. published their research in Separations in 2022 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Reference of 27208-80-6

A Simple Method for the Determination of Polyphenolic Compounds from Grapevine Leaves was written by Stambuk, Petra;Anic, Marina;Huzanic, Nera;Preiner, Darko;Karoglan, Marko;Kontic, Jasminka Karoglan;Tomaz, Ivana. And the article was included in Separations in 2022.Reference of 27208-80-6 The following contents are mentioned in the article:

Grapevine leaves are photosynthetically the most active green organs providing carbohydrates that are of utmost importance for the regular vine’s metabolism and growth. Moreover, leaves are the pioneers of fungal infections caused by B. cinerea, E. necator, and P. viticola. Plant response to these microorganisms mostly depends on the content and composition of phenolic compounds abundantly found in the leaf’s outer tissues (epidermis, cuticle, trichomes). In order to obtain a satisfactory quantity of phenolic compounds, an experiment was conducted towards optimizing a solid-liquid extraction method. Variables were as follows: the type of organic solvent, the sample weight, the extraction temperature, and the extraction time. The optimal conditions were obtained by applying the response surface methodol. Therefore, by using acetonitrile as the organic solvent, conducting a single-step extraction at the temperature of 48°C during the time period of 2 h and25 min with a solid-to-solvent ratio of 1:56 g mL-1(178 mg of leaves powder and 10 mL of extraction solvent) the optimal content of phenolic compounds was obtained. This protocol is reliable, fast, and relatively easy to perform for the determination of the abovementioned compounds This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Reference of 27208-80-6).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Reference of 27208-80-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Annadurai, Narendran et al. published their research in FEBS Journal in 2022 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Quality Control of (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Antitumour drugs targeting tau R3 VQIVYK and Cys322 prevent seeding of endogenous tau aggregates by exogenous seeds was written by Annadurai, Narendran;Malina, Lukas;Salmona, Mario;Diomede, Luisa;Bastone, Antonio;Cagnotto, Alfredo;Romeo, Margherita;Srejber, Martin;Berka, Karel;Otyepka, Michal;Hajduch, Marian;Das, Viswanath. And the article was included in FEBS Journal in 2022.Quality Control of (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:

Emerging exptl. evidence suggests tau pathol. spreads between neuroanatomically connected brain regions in a prion-like manner in Alzheimer′s disease (AD). Tau seeding, the ability of prion-like tau to recruit and misfold naive tau to generate new seeds, is detected early in human AD brains before the development of major tau pathol. Many antitumor drugs have been reported to confer protection against neurodegeneration, supporting the repurposing of approved and exptl. or investigational oncol. drugs for AD therapy. In this study, we evaluated whether antitumor drugs that abrogate the generation of seed-competent aggregates of tau Repeat 3 (R3) domain peptides can prevent tau seeding and toxicity in Tau-RD P301S FRET Biosensor cells and Caenorhabditis elegans. We demonstrate that drugs that interact with the N-terminal VQIVYK or the C-terminal region housing the Cys322 prevent R3 dimerization, abolishing the generation of prion-like R3 seeds. Preformed R3 seeds (fibrils) capped with, or R3 seeds formed in the presence of VQIVYK- or Cys322-targeting drugs have a reduced potency to cause aggregation of naive tau in biosensor cells and protect worms from aggregate toxicity. These findings indicate that VQIVYK- or Cys322-targeting drugs may act as prophylactic agents against tau seeding. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Quality Control of (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Quality Control of (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Qiu, Shuang et al. published their research in Food Research International in 2022 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Electric Literature of C20H22O8

Non-Saccharomyces yeasts highly contribute to characterisation of flavor profiles in greengage fermentation was written by Qiu, Shuang;Chen, Kai;Liu, Chang;Wang, Yingxiang;Chen, Tao;Yan, Guoliang;Li, Jingming. And the article was included in Food Research International in 2022.Electric Literature of C20H22O8 The following contents are mentioned in the article:

Non-Saccharomyces yeasts play an important role in greengage fermentation To obtain practical non-Saccharomyces yeasts for high-acid fermentation environments, and improve the flavor quality of fermented greengage beverage, four indigenous acid-tolerant non-Saccharomyces yeast strains were used to conduct greengage fermentation Hanseniaspora occidentalis, Pichia terricola, and Issatchenkia orientalis were competitively fermentable and significantly decreased the concentration of citric acid and malic acid. HS-SPME and GC-MS were used to analyze the aroma profiles, and results showed that H. occidentalis has potential to produce explicit fruity aroma, since the fermented beverages obtained more esters. Moreover, phenolic acids had the highest concentration among polyphenols of fermented greengage beverage. Comparatively, spontaneous fermentation produced higher levels of most polyphenols, whereas P. terricola treatment resulted predominantly in partial phenolic acids. Kendall coefficients indicated that procyanidins and glycosidic bound flavonols significantly pos. correlated with more than 30% volatiles. This study verified the biofunctions of non-Saccharomyces yeasts and applied their potential for flavor improvement in the production of high-acidity fermented fruit beverages. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Electric Literature of C20H22O8).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Electric Literature of C20H22O8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Anic, Marina et al. published their research in Scientia Horticulturae (Amsterdam, Netherlands) in 2021 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Formula: C20H22O8

The effect of leaf removal on canopy microclimate, vine performance and grape phenolic composition of Merlot (Vitis vinifera L.) grapes in the continental part of Croatia was written by Anic, Marina;Osrecak, Mirela;Andabaka, Zeljko;Tomaz, Ivana;Vecenaj, Zeljko;Jelic, Damjan;Kozina, Bernard;Kontic, Jasminka Karoglan;Karoglan, Marko. And the article was included in Scientia Horticulturae (Amsterdam, Netherlands) in 2021.Formula: C20H22O8 The following contents are mentioned in the article:

Leaf removal in the cluster zone is one of the commonly applied viticultural practices used to increase light penetration and to decrease humidity in dense foliage. A two- year study (2018/2019) was carried out on the Merlot variety grown in the vineyard on the Croatian hillside with continental climatic conditions, to study the effects of basal leaf removal on canopy microclimate, grape chem. composition and vine production Leaf and lateral shoot removal was performed at berry set. Meteorol. data were recorded together with microclimatic measurements: air temperature, UV radiation and relative humidity in the fruiting zone. Leaf removal altered microclimate by increasing the UV radiation within the cluster zone. Sugar concentration, bud fruitfulness and yield performance was not affect by the treatment, while leaf removal significantly reduced the concentration of titratable acidity in berry samples and increased the concentration of phenols, anthocyanins, flavonols and flavan-3-ols in berry skin. Leaf removal had a higher influence on the grape anthocyanin and flavonol composition in a season with the cooler berry ripening conditions. These results revealed important difference in leaf removal efficiency on phenolic composition of the grapes in different seasonal climatic conditions during ripening. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Formula: C20H22O8).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Formula: C20H22O8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Amer, Reham I. et al. published their research in Biomedicine & Pharmacotherapy in 2021 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.COA of Formula: C20H22O8

Downregulation of MMP1 expression mediates the anti-aging activity of Citrus sinensis peel extract nanoformulation in UV induced photoaging in mice was written by Amer, Reham I.;Ezzat, Shahira M.;Aborehab, Nora M.;Ragab, Mai F.;Mohamed, Dalia;Hashad, Amira;Attia, Dalia;Salama, Maha M.;El Bishbishy, Mahitab H.. And the article was included in Biomedicine & Pharmacotherapy in 2021.COA of Formula: C20H22O8 The following contents are mentioned in the article:

Aging of the skin is a complicated bioprocess that is affected by constant exposure to UV irradiation The application of herbal-based anti-aging creams is still the best choice for treatment. In the present study, Citrus sinensis L. fruit peels ethanolic extract (CSPE) was formulated into lipid nanoparticles (LNPs) anti-aging cream. Eight different formulations of CSEP-LNPs were prepared and optimized using 23 full factorial designs. In vivo antiaging effect of the best formula was tested in Swiss albino mice where photo-aging was induced by exposure to UV radiation. HPLC-QToF-MS/MS metabolic profiling of CSPE led to the identification of twenty-nine metabolites. CSPE was standardized to a hesperidin content of 15.53 ± 0.152 mg% using RP-HPLC. It was suggested that the optimized formulation (F7) had (245 nm) particle size, (91.065%) EE, and (91.385%) occlusive effect with a spherical and smooth surface. The visible appearance of UV-induced photoaging in mice was significantly improved after topical application on CSPE-NLC cream for 5 wk, levels of collagen and SOD were significantly increased in CSPE- NLC group, while levels of PGE2, COX2, JNK, MDA, and elastin was reduced. Finally, The prepared anti-aging CSPE-NLC cream represents a safe, convenient, and promising skincare cosmetic product. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6COA of Formula: C20H22O8).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.COA of Formula: C20H22O8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Pineiro, Z. et al. published their research in European Food Research and Technology in 2022 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Reference of 27208-80-6

Microwave-assisted extraction of non-coloured phenolic compounds from grape cultivars was written by Pineiro, Z.;Aliano-Gonzalez, M. J.;Gonzalez-de-Peredo, A. V.;Palma, M.;de Andres, M. T.. And the article was included in European Food Research and Technology in 2022.Reference of 27208-80-6 The following contents are mentioned in the article:

A new microwave-assisted extraction (MAE) method was developed for the fast anal. of non-colored phenolic content in grapes. The stability of 25 phenolic compounds under the microwave extraction conditions was assessed to define the optimal temperature Several variables were evaluated to study their influence on the extraction process, including microwave power, stirring, extraction temperature, extraction time, sample weight and extraction volume The final extraction conditions were 3.0 g extracted with 10 mL of solvent (50% methanol in water at pH 2) at 70°C, a system power of 750 W and a stirring of 50%. The extraction time was set at 3 min (together with a 2 min pre-heating step). Repeatability and reproducibility were also evaluated, and the resulting relative standard deviation (RSD) values (n = 5) were lower than 10% for all phenolic compounds analyzed. Finally, the new method was successfully applied to 80 grape samples (including wine and table grapes). Subsequently, the results were compared to those obtained by means of ultrasound-assisted extraction (UAE). Similar extraction yields were obtained for non-colored phenolic compounds under the optimized conditions. However, MAE proved to be slightly more efficient than UAE in the extraction of flavonols, also allowing the simultaneous treatment of various samples. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Reference of 27208-80-6).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Reference of 27208-80-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Samra, Yara A. et al. published their research in Journal of Biochemical and Molecular Toxicology in 2021 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Category: alcohols-buliding-blocks

Polydatin gold nanoparticles potentiate antitumor effect of doxorubicin in Ehrlich ascites carcinoma-bearing mice was written by Samra, Yara A.;Abdelghany, Amr M.;Zaghloul, Randa A.. And the article was included in Journal of Biochemical and Molecular Toxicology in 2021.Category: alcohols-buliding-blocks The following contents are mentioned in the article:

Breast cancer is a leading cause of death. Anticancer treatment such as gold nanoparticles (AuNP) seems highly promising in this regard. Therefore, this study aimed to assess the beneficial effect of doxorubicin (Dox) and polydatin (PD) AuNP in Ehrlich ascites carcinoma (EAC) and the ability of PD-AuNP to protect the heart from Dox’s deteriorating effects. EAC was induced in mice. The mice were divided into nine groups: normal, EAC, PD: received PD (20 mg/kg), Dox: received Dox (2 mg/kg), PD-AuNPH: received 10 ppm AuNP of PD, PD-AuNPL: received 5 ppm AuNP of PD, Dox-AuNP: received Dox-AuNP, PD-Dox-AuNP: received PD-Dox-AuNP, AuNP: received AuNP. On the 21st day from tumor inoculation, the mice were sacrificed and tumor and heart tissues were removed. Tumor β-catenin/Cyclin D1 and p53 were assessed by immunohistochem. IL-6 was determined by ELISA. PD-AuNP and Dox-AuNP showed a significant reduction in tumor volume and weight more than their free forms. Also, PD-AuNP and Dox-AuNP showed markedly less dense tumor cells. A β-catenin and Cyclin D1 were markedly decreased and p53 was highly upregulated by PD-AuNP and Dox-AuNP. Moreover, PD-AuNP and Dox-AuNP have the ability to decrease IL-6 production PD-AuNP protected the heart from Dox-induced severe degeneration. Therefore, PD-AuNP could be a tool to decelerate the progression of breast cancer. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Category: alcohols-buliding-blocks).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ding, Changhong et al. published their research in Archives of Microbiology in 2022 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Reference of 27208-80-6

Transcriptomic analysis reveals the mechanism of host growth promotion by endophytic fungus of Rumex gmelinii Turcz was written by Ding, Changhong;Wang, Shouyu;Li, Jiabin;Wang, Zhenyue. And the article was included in Archives of Microbiology in 2022.Reference of 27208-80-6 The following contents are mentioned in the article:

Rumex gmelinii Turcz. (RGT) is a medicinal plant of the genus Rumex, family Polygonaceae. Our research group isolated an endophytic fungus, Plectosphaerella cucumerina (Strain J-G) from RGT, which could significantly promote host growth when co-cultured with host seedlings. In this study, we used transcriptome anal. and verification experiments to explore the mol. mechanisms underlying this growth-promoting effect. We found that, during co-culture with Strain J-G, the expression of genes encoding key enzymes in amino acid metabolism and carbohydrate synthesis and metabolism were up-regulated in RGT tissue culture seedlings, providing addnl. substrate and energy for plant growth. In addition, the expression of genes encoding the responser of RGT seedlings to hormones, including auxin and cytokinin, were significantly enhanced, promoting plant growth and development. Furthermore, RGT seedling defense systems were mobilized by Strain J-G; therefore, more secondary metabolites and substances involved in stress resistance were produced, ensuring normal plant growth and metabolism The research showed Strain J-G significantly promote the accumulation of biomass and effective components of RGT, which provide basis for its application. This research also provides a reference method for the study of growth-promoting mechanism of endophytic fungi. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Reference of 27208-80-6).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Reference of 27208-80-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Huang, Ling et al. published their research in Molecules in 2022 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Product Details of 27208-80-6

Composition of Pinot Noir Wine from Grapevine Red Blotch Disease-Infected Vines Managed with Exogenous Abscisic Acid Applications was written by Huang, Ling;Alcazar Magana, Armando;Skinkis, Patricia A.;Osborne, James;Qian, Yanping L.;Qian, Michael C.. And the article was included in Molecules in 2022.Product Details of 27208-80-6 The following contents are mentioned in the article:

Grapevine red blotch disease (GRBD) has neg. effects on grape development and impacts berry ripening. Abscisic acid (ABA) is a plant growth regulator involved in the initiation of berry ripening. Exogenous abscisic acid application was compared to an unsprayed control on GRBD-pos. Pinot noir vines during two vintages, and the total monomeric anthocyanin, total phenolics, phenolic composition, and volatile profile were measured in wines. In addition, untargeted metabolites were profiled using high-resolution LC-MS/MS. Results showed that the wine composition varied by vintage year and was not consistent with ABA application. Wines from the ABA treatment had a lower total anthocyanin and total phenolic content in one year. The untargeted high-resolution LC-MS/MS anal. showed a higher abundance of phenolic compounds in ABA wines in 2019, but lower in 2018. The wine volatile compounds of ABA treatments varied by vintage. There were higher levels of free β-damascenone, β-ionone, nerol, and several fermentation-derived esters, acids, and alcs. in ABA wines, but these were not observed in 2019. Lower 3-isobutyl-2-methoxypyrazine (IBMP) was also observed in wines with ABA treatment in 2019. The results demonstrated that ABA application to the fruit zones did not consistently mitigate the adverse impacts of GRBD on Pinot noir wines. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Product Details of 27208-80-6).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Product Details of 27208-80-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hameed, Ahsan et al. published their research in Metabolites in 2022 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Name: (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

A Comparative and Comprehensive Characterization of Polyphenols of Selected Fruits from the Rosaceae Family was written by Hameed, Ahsan;Liu, Ziyao;Wu, Hanjing;Zhong, Biming;Ciborowski, Michal;Suleria, Hafiz Ansar Rasul. And the article was included in Metabolites in 2022.Name: (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:

The present research presents a comprehensive characterization of polyphenols from peach, pear, and plum using liquid chromatog. coupled with electrospray ionization quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS), followed by the determination of their antioxidant potential. Plums showed the highest total phenolic content (TPC; 0.62 mg GAE/g), while peaches showed the highest total flavonoid content (TFC; 0.29 mg QE/g), also corresponding to their high scavenging activities (i.e., DPPH, ABTS, FRAP, and TAC). In all three fruit samples, a total of 51 polyphenolic compounds were tentatively identified and were mainly characterized from hydroxybenzoic acids, hydroxycinnamic acids, hydroxyphenylpentanoic acids, flavanols, flavonols, and isoflavonoids subclasses. Twenty targeted phenolic compounds were quantified using high-performance liquid chromatog. with photodiode array detection (HPLC-PDA). The plum cultivar showed the highest content of phenolic acids (chlorogenic acid, 11.86 mg/100 g), whereas peach samples showed the highest concentration of flavonoids (catechin, 7.31 mg/100 g), as compared to pear. Based on these findings, the present research contributes and complements the current characterization data of these fruits presented in the literature, as well as ensures and encourages the utilization of these fruits in different food, feed, and nutraceutical industries. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Name: (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Name: (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts