Phenolic and color characteristics of must and wine obtained from red grapes treated by pulsed electric fields. Efficacy of PEF to reduce maceration time in elaboration of red wines was written by Lopez-Giral, N.;Lopez, R.;Santamaria, P.;Gonzalez-Arenzana, L.;Garde-Cerdan, T.. And the article was included in European Food Research and Technology.COA of Formula: C20H22O8 The following contents are mentioned in the article:
Pulsed elec. fields effect was studied on the physico-chem. and general phenolic composition as color characteristics and stilbene content in must and wine. For this purpose, a continuous pulsed elec. fields equipment was used to treat three red grape varieties of DOCa Rioja. Graciano, Tempranillo and Grenache wines from these grapes were elaborated with different maceration times, 2 days in the untreated sample (control) and the PEF-treated sample (PEF), and normal maceration time in another untreated sample (control-NM). Parameters as color intensity, anthocyanin content, total polyphenol index and tannin content showed no differences between the PEF sample with 2 days of maceration and the control-NM sample, except in the case of Tempranillo wines. Total stilbenes, trans-resveratrol and trans-piceid of Graciano wines elaborated from PEF samples showed a higher concentration than the control wines. Alternatively, PEF wines and control-NM wines showed no differences between them. Tempranillo variety wines presented no differences between the three types of samples. In the Grenache variety, only trans-piceid levels showed differences between control and PEF wines. Moreover, relationship between must and wine characteristics was evaluated and compared between different samples. The trend lines obtained for the CI, TPI and AC parameters for samples of Graciano, Tempranillo and Garnacha indicate that the initial content of compounds extracted significantly affected the days of maceration necessary to obtain the appropriate wine. The results obtained increase the knowledge of pulsed elec. fields as a technol. available for use in the winery to elaborate red wines with reduced maceration time. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6COA of Formula: C20H22O8).
(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.COA of Formula: C20H22O8
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts