Rafanelli, Claudio E. et al. published their research in Water, Air, and Soil Pollution in 1978 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. The oxygen atom of the strongly polarized O鈥旽 bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Name: rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Photochlorination of organic substances by aqueous chloride ions codissolved with anionic NOx. Part II. Effect of nitrite was written by Rafanelli, Claudio E.;Petriconi, Gianna L.;Papee, Henry M.. And the article was included in Water, Air, and Soil Pollution in 1978.Name: rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate This article mentions the following:

Aqueous NO2 codissolved with Cl promotes photochlorination of some reactive organic compounds in contact with those solutions Both overall patterns of the process and the quantum yields of this Cl transfer into the organic phase are very similar to the patterns and yields of reactions which involved NO3 and were carried out under artificial illumination. With analogy to those photoreactions of NO3-Cl systems, the overall kinetics outlined in the laboratory for systems comprising NO2 are also followed, with higher quantum yields, under sunlight illumination. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Name: rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. The oxygen atom of the strongly polarized O鈥旽 bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Name: rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hsieh, Kai-Ta et al. published their research in Analytica Chimica Acta in 2015 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Computed Properties of C10H22O3

Automated on-line liquid-liquid extraction system for temporal mass spectrometric analysis of dynamic samples was written by Hsieh, Kai-Ta;Liu, Pei-Han;Urban, Pawel L.. And the article was included in Analytica Chimica Acta in 2015.Computed Properties of C10H22O3 This article mentions the following:

Most real samples cannot directly be infused to mass spectrometers because they could contaminate delicate parts of ion source and guides, or cause ion suppression. Conventional sample preparation procedures limit temporal resolution of anal. We have developed an automated liquid-liquid extraction system that enables unsupervised repetitive treatment of dynamic samples and instantaneous anal. by mass spectrometry (MS). It incorporates inexpensive open-source microcontroller boards (Arduino and Netduino) to guide the extraction and anal. process. Duration of every extraction cycle is 17 min. The system enables monitoring of dynamic processes over many hours. The extracts are automatically transferred to the ion source incorporating a Venturi pump. Operation of the device has been characterized (repeatability, RSD = 15%, n = 20; concentration range for ibuprofen, 0.053-2.000 mM; LOD for ibuprofen, 鈭?.005 mM; including extraction and detection). To exemplify its usefulness in real-world applications, we implemented this device in chem. profiling of pharmaceutical formulation dissolution process. Temporal dissolution profiles of com. ibuprofen and acetaminophen tablets were recorded during 10 h. The extraction-MS datasets were fitted with exponential functions to characterize the rates of release of the main and auxiliary ingredients (e.g. ibuprofen, k = 0.43 卤 0.01 h-1). The electronic control unit of this system interacts with the operator via touch screen, internet, voice, and short text messages sent to the mobile phone, which is helpful when launching long-term (e.g. overnight) measurements. Due to these interactive features, the platform brings the concept of the Internet-of-Things (IoT) to the chem. laboratory environment. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Computed Properties of C10H22O3).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R鈥昈鈭?. For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Computed Properties of C10H22O3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Salem, Mohamed Z. M. et al. published their research in International Biodeterioration & Biodegradation in 2016 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Recommanded Product: 2451-01-6

Evaluation of usage three natural extracts applied to three commercial wood species against five common molds was written by Salem, Mohamed Z. M.;Zidan, Yassin E.;El Hadidi, Nesrin M. N.;Mansour, Maisa M. A.;Abo Elgat, Wael A. A.. And the article was included in International Biodeterioration & Biodegradation in 2016.Recommanded Product: 2451-01-6 This article mentions the following:

Natural extracts have become of high interest in the past ten years for their inhibiting the growth of molds over wood and wood products surfaces in service or during the storage of building materials. In the present study, the antifungal effects of three natural extracts applied to three woods against five common molds were assessed. The growth of fungal hyphae of Alternaria alternata, Fusarium subglutinans, Chaetomium globosum, Aspergillus niger, and Trichoderma viride on the surfaces of Pinus sylvestris, Pinus rigida and Fagus sylvatica woods treated with extracts of Pinusrigida (heartwood), Eucalyptus camaldulensis (leaves) and Costus speciosus (rhizomes) was visually estimated GC/MS and FTIR analyses were used to identify the chem. constituents and the functional groups of extracts a-terpineol (24.91%), borneol (10.95%), terpin hydrate (9.60%), D-fenchyl alc. (5.99%), and limonene glycol (5.05%), which are the main constituents of P. rigida heartwood methanol extract The main chem. compounds of methanol extract from Eucalyptuscamaldulensis leaves were spathulenol (18.89%), cryptone (5.79%), 4,6,6-trimethyl-2-(3-methylbuta-1,3-dienyl)-3-oxatricyclo[5.1.0.0(2,4)]octane (5.79%), (3,3-dimethylcyclohexylidene)-(E)-acetaldehyde (5.57%), and ascaridole (4.32%). The main constituents identified in the distilled water extract from Costusspeciosus rhizomes were meso-erythritol (12.21%), methyl-2-methyl-1,3-oxothiolan-2-yl-ketone (11.61%), (all-Z)-5,8,11,14,17-eicosapentaenoic acid-Me ester (9.74%), diosgenin (5.07%), 2-ethyl-3-hydroxy-4H-pyran-4-one (4.43%), 3′,4′,7-trimethylquercetin (3.17%), and digitoxin (2.77%). Wood specimens treated at the level of 2% concentration of P. rigida heartwood extract observed good inhibition to the mold growth under laboratory conditions. These findings support the potential use of natural extracts for natural wood protection against mold infestation for surface treatment of wood. The results indicate that wood extracts may be useful for reducing the incidence of mold on wood products, but none of the materials evaluated completely inhibited the test fungi. These extracts may provide a useful value-added application for byproducts of lumber production from these species. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Recommanded Product: 2451-01-6).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Recommanded Product: 2451-01-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Mersich-Vetsey-Kormendi, Agnes et al. published their research in Gyogyszereszet in 1972 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Electric Literature of C10H22O3

Changes of the particle size in suspension type medicines was written by Mersich-Vetsey-Kormendi, Agnes. And the article was included in Gyogyszereszet in 1972.Electric Literature of C10H22O3 This article mentions the following:

Medicinal suspensions containing terpine hydrate, norcaine, salicylamide, Bi salicylate in aqueous medium, norcaine, Na salicylate, amidopyrine, caffeine and Na benzoate, phenobarbital and Na noramidopyrine methanesulfonate in soft or solid fatty medium were examined for stability based on the initial parameters. No generalization could be made, hence the elaboration of new formulations of medicinal suspensions, the optimum conditions should be determined individually. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Electric Literature of C10H22O3).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Electric Literature of C10H22O3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Rout, P. K. et al. published their research in Fafai Journal in 2001 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Fractional hydrodistillation of Citronella (Cymbopogon winterianus Jowitt) was written by Rout, P. K.;Jena, K. S.;Rao, Y. R.. And the article was included in Fafai Journal in 2001.Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate This article mentions the following:

Fractional hydro-distillation of Citronella Grass (C. winterianus Jowitt) and anal. of the decanted oil fractions showed that citronellal-rich fractions and sesquiterpenoid-rich fractions can be separated at the hydrodistillation stage itself. About 6% essential oil is lost in the aqueous layer. Further, 4 constituents, 6-methyl-5-hepten-2-one, benzyl alc., 2-[2-hydroxy-2-propyl]-5-menthylcyclohexanol and terpin hydrate present in significant quantities in the aqueous layer are not detected in any of the decanted oil fractions. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Abdul Hammid, Syaliza et al. published their research in Natural Product Communications in 2015 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Quality Control of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Chemotype of Litsea cubeba Essential Oil and Its Bioactivity was written by Abdul Hammid, Syaliza;Ahmad, Fasihuddin. And the article was included in Natural Product Communications in 2015.Quality Control of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate This article mentions the following:

The essential oils from different parts of Litsea cubeba, collected from the highlands of Sarawak, were isolated and their chem. compositions analyzed. This study demonstrated significant variations in the chem. compositions and the chem. profiles of the volatiles and could provide valuable supplementary information on the geog. variations of the species. The fruit essential oil was dominated by citronellal, d-limonene and citronellol, while the leaf oil was high in eucalyptol and 伪-terpineol. High concentrations of citronellal and citronellol in both the root and bark oils were identified. In the stem, the oil was dominated by eucalyptol, d-limonene and 伪-terpineol. The activity of the oils against brine shrimp larvae, bacteria, yeast and fungi was determined The oils were toxic against brine shrimp larvae with LC50 values ranging from 25.1 – 30.9渭L/mL. The oils also demonstrated a wide spectrum of inhibition against microorganisms with inhibition zones between 19.5 – 46.7 mm against Gram-pos. bacteria and 10.5 – 90.0 mm against yeast and fungi. However, the oils were not active against Gram-neg. bacteria. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Quality Control of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Quality Control of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gardini, Fausto et al. published their research in African Journal of Microbiology Research in 2009 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Composition of four essential oils obtained from plants from Cameroon, and their bactericidal and bacteriostatic activity against Listeria monocytogenes, Salmonella enteritidis and Staphylococcus aureus was written by Gardini, Fausto;Belletti, Nicoletta;Ndagijimana, Maurice;Guerzoni, Maria E.;Tchoumbougnang, Francois;Zollo, Paul H. Amvam;Micci, Claudio;Lanciotti, Rosalba;Sado Kamdem, Sylvain L.. And the article was included in African Journal of Microbiology Research in 2009.Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate This article mentions the following:

The composition of four essential oils (EOs) extracted by hydrodistillation from plants of common use in Cameroon (Curcuma longa, Xylopia aethiopica, Zanthoxylum leprieurii L., Zanthoxylum xanthoxyloides) was assessed by gas chromatog.-mass. Their bactericidal and bacteriostatic activity was tested in vitro against three food borne pathogenic bacteria: Listeria monocytogenes, Salmonella enteritidis and Staphylococcus aureus. The bacteriostatic activities of this EOs on food borne bacteria were assessed in vitro through optical d. measurements. The minimal bactericidal concentrations (MBC) were determined in broth combined with a spot plating method. Z. xanthoxyloides and Z. leprieurii showed a similar composition, with a prevalence of oxygenated monoterpenes (about 58%). The EO of Z. xanthoxyloides was the most effective against the microorganisms tested. Its higher concentration of geraniol could be linked to this higher activity. In almost all cases, the MBC was higher than the maximum concentration tested (3000 ppm). Notwithstanding their low bactericidal effect, the EOs studied showed interesting inhibiting activities against the tested food borne pathogens. S. enteritidis was the most resistant to the bacteriostatic effect of the four EOs. The knowledge of the antimicrobial potential of local plant EOs used in developing countries could help in their choice and their use to improve food safety and shelf-life. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ha, Minh Hien et al. published their research in Tap Chi Duoc Hoc in 2006 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Name: rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Protocol for the analyzing of terpin hydrate in a multi-component sugar coated tablet named Pectol D by GC was written by Ha, Minh Hien;Tran, Thi Bich Ha;Bo, Nguyen Thuy Duoung. And the article was included in Tap Chi Duoc Hoc in 2006.Name: rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate This article mentions the following:

Anal. of terpin hydrate in multi-component sugar coated tablets namely Pectol D by UV-Vis method was not possible due to the interference of excipients. Alternatively, a GC method using a packed column of 50% di-Me 50% di-Ph polysiloxane was suggested and validated based on ASEAN Guidelines for Validation of Anal. Procedures. The method was proved to be accurate, precise and sufficiently selective. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Name: rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Name: rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Desalbres, L. et al. published their research in Rev. ind. min茅rale in 1956 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Structure and activity of the constituents of the flotation pine oils was written by Desalbres, L.. And the article was included in Rev. ind. min茅rale in 1956.Quality Control of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate This article mentions the following:

Pine oil is widely used in flotation processes. The foaming activity of a pine oil is bound to the presence of terpenic alcs. in C10H18O. The average chem. analysis of pine oils gives: tertiary alcs.:terpineols 60-70%, secondary alcs.:borneol-fenchol 15-20%, hydrocarbons 10-20%. The structural diagrams of these and their subgroups are given. The tertiary hydroxyl group is the most active; then the secondary groups and ether oxides; the ethylenic hydrocarbons have no activity. No exact relation exists between the solubility and the foaming power within a given group. At 15掳, 2.1 g. of terpineol is needed to saturate 1 g. of water, 1 g. of menthanol, 0.44 g. of borneol; menthanol foams the most. The surface activity of a mol. has no relation to its foaming activity: a saturated menthanol sol at 15掳 has a surface tension of 38 dynes/cm., a saturated terpineol sol of 39 dynes/cm. For the same concentration, the menthanol gives a much greater volume of foam. It is the same with the hydrocarbons: saturated cymene sol has a surface tension of 52, of terpinene 51 dynes/cm., but the cymene is nonfoaming while terpinene is. The foaming activity of a mol. seems to be connected therefore to an assembly of characters of a functional and structural order. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Quality Control of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts