A general carbonyl alkylative amination for tertiary amine synthesis was written by Kumar, Roopender;Floden, Nils J.;Whitehurst, William G.;Gaunt, Matthew J.. And the article was included in Nature (London, United Kingdom) in 2020.Electric Literature of C11H14ClN This article mentions the following:
The ubiquity of tertiary alkylamines in pharmaceutical and agrochem. agents, natural products and small-mol. biol. probes has stimulated efforts towards their streamlined synthesis. Arguably the most robust method for the synthesis of tertiary alkylamines is carbonyl reductive amination, which comprises two elementary steps: the condensation of a secondary alkylamine with an aliphatic aldehyde to form an all-alkyl-iminium ion, which is subsequently reduced by a hydride reagent. Direct strategies were sought for a ‘higher order’ variant of this reaction via the coupling of an alkyl fragment with an alkyl-iminium ion that was generated in situ. However, despite extensive efforts, the successful realization of a ‘carbonyl alkylative amination’ has not yet been achieved. Here the authors present a practical and general synthesis of tertiary alkylamines through the addition of alkyl radicals to all-alkyl-iminium ions. The process is facilitated by visible light and a silane reducing agent, which trigger a distinct radical initiation step to establish a chain process. This operationally straightforward, metal-free and modular transformation forms tertiary amines, without structural constraint, via the coupling of aldehydes and secondary amines with alkyl halides. The structural and functional diversity of these readily available precursors provides a versatile and flexible strategy for the streamlined synthesis of complex tertiary amines. In the experiment, the researchers used many compounds, for example, 2,3,4,5-Tetrahydro-1H-1,5-methanobenzo[d]azepine hydrochloride (cas: 230615-52-8Electric Literature of C11H14ClN).
2,3,4,5-Tetrahydro-1H-1,5-methanobenzo[d]azepine hydrochloride (cas: 230615-52-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Electric Literature of C11H14ClN
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts