Kumar, Roopender et al. published their research in Nature (London, United Kingdom) in 2020 | CAS: 230615-52-8

2,3,4,5-Tetrahydro-1H-1,5-methanobenzo[d]azepine hydrochloride (cas: 230615-52-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Electric Literature of C11H14ClN

A general carbonyl alkylative amination for tertiary amine synthesis was written by Kumar, Roopender;Floden, Nils J.;Whitehurst, William G.;Gaunt, Matthew J.. And the article was included in Nature (London, United Kingdom) in 2020.Electric Literature of C11H14ClN This article mentions the following:

The ubiquity of tertiary alkylamines in pharmaceutical and agrochem. agents, natural products and small-mol. biol. probes has stimulated efforts towards their streamlined synthesis. Arguably the most robust method for the synthesis of tertiary alkylamines is carbonyl reductive amination, which comprises two elementary steps: the condensation of a secondary alkylamine with an aliphatic aldehyde to form an all-alkyl-iminium ion, which is subsequently reduced by a hydride reagent. Direct strategies were sought for a ‘higher order’ variant of this reaction via the coupling of an alkyl fragment with an alkyl-iminium ion that was generated in situ. However, despite extensive efforts, the successful realization of a ‘carbonyl alkylative amination’ has not yet been achieved. Here the authors present a practical and general synthesis of tertiary alkylamines through the addition of alkyl radicals to all-alkyl-iminium ions. The process is facilitated by visible light and a silane reducing agent, which trigger a distinct radical initiation step to establish a chain process. This operationally straightforward, metal-free and modular transformation forms tertiary amines, without structural constraint, via the coupling of aldehydes and secondary amines with alkyl halides. The structural and functional diversity of these readily available precursors provides a versatile and flexible strategy for the streamlined synthesis of complex tertiary amines. In the experiment, the researchers used many compounds, for example, 2,3,4,5-Tetrahydro-1H-1,5-methanobenzo[d]azepine hydrochloride (cas: 230615-52-8Electric Literature of C11H14ClN).

2,3,4,5-Tetrahydro-1H-1,5-methanobenzo[d]azepine hydrochloride (cas: 230615-52-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Electric Literature of C11H14ClN

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Coe, Jotham W. et al. published their research in Journal of Medicinal Chemistry in 2005 | CAS: 230615-52-8

2,3,4,5-Tetrahydro-1H-1,5-methanobenzo[d]azepine hydrochloride (cas: 230615-52-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Application of 230615-52-8

Varenicline: An α4β2 Nicotinic Receptor Partial Agonist for Smoking Cessation was written by Coe, Jotham W.;Brooks, Paige R.;Vetelino, Michael G.;Wirtz, Michael C.;Arnold, Eric P.;Huang, Jianhua;Sands, Steven B.;Davis, Thomas I.;Lebel, Lorraine A.;Fox, Carol B.;Shrikhande, Alka;Heym, James H.;Schaeffer, Eric;Rollema, Hans;Lu, Yi;Mansbach, Robert S.;Chambers, Leslie K.;Rovetti, Charles C.;Schulz, David W.;Tingley, F. David III;O’Neill, Brian T.. And the article was included in Journal of Medicinal Chemistry in 2005.Application of 230615-52-8 This article mentions the following:

Herein we describe a novel series of compounds from which varenicline (1, 6,7,8,9-tetrahydro-6,10-methano-6H-pyrazino[2,3-h][3]benzazepine) has been identified for smoking cessation. Neuronal nicotinic acetylcholine receptors (nAChRs) mediate the dependence-producing effects of nicotine. We have pursued α4β2 nicotinic receptor partial agonists to inhibit dopaminergic activation produced by smoking while simultaneously providing relief from the craving and withdrawal syndrome that accompanies cessation attempts. Varenicline displays high α4β2 nAChR affinity and the desired in vivo dopaminergic profile. In the experiment, the researchers used many compounds, for example, 2,3,4,5-Tetrahydro-1H-1,5-methanobenzo[d]azepine hydrochloride (cas: 230615-52-8Application of 230615-52-8).

2,3,4,5-Tetrahydro-1H-1,5-methanobenzo[d]azepine hydrochloride (cas: 230615-52-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Application of 230615-52-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cabrera, Pablo J. et al. published their research in Journal of the American Chemical Society in 2018 | CAS: 230615-52-8

2,3,4,5-Tetrahydro-1H-1,5-methanobenzo[d]azepine hydrochloride (cas: 230615-52-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Product Details of 230615-52-8

Second-Generation Palladium Catalyst System for Transannular C-H Functionalization of Azabicycloalkanes was written by Cabrera, Pablo J.;Lee, Melissa;Sanford, Melanie S.. And the article was included in Journal of the American Chemical Society in 2018.Product Details of 230615-52-8 This article mentions the following:

This article describes the development of a second-generation catalyst system for the transannular C-H functionalization of alicyclic amines. Pyridine- and quinoline-carboxylate ligands are shown to be highly effective for increasing the reaction rate, yield, and scope of Pd-catalyzed transannular C-H arylation reactions of azabicyclo[3.1.0]hexane, azabicyclo[3.1.1]heptane, azabicyclo[3.2.1]octane, and piperidine derivatives Mechanistic studies reveal that the pyridine/quinoline-carboxylates play a role in impeding both reversible and irreversible catalyst decomposition pathways. These ligands enable the first reported examples of the transannular C-H arylation of the ubiquitous tropane, 7-azanorbornane, and homotropane cores. Finally, the pyridine/quinoline-carboxylates are shown to promote both transannular C-H arylation and transannular C-H dehydrogenation on a homotropane substrate. In the experiment, the researchers used many compounds, for example, 2,3,4,5-Tetrahydro-1H-1,5-methanobenzo[d]azepine hydrochloride (cas: 230615-52-8Product Details of 230615-52-8).

2,3,4,5-Tetrahydro-1H-1,5-methanobenzo[d]azepine hydrochloride (cas: 230615-52-8) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Product Details of 230615-52-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts