What unique challenges do researchers face in 16588-26-4

In some applications, this compound(16588-26-4)Product Details of 16588-26-4 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Product Details of 16588-26-4. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 3-Bromo-4-chloronitrobenzene, is researched, Molecular C6H3BrClNO2, CAS is 16588-26-4, about Optimization of 5-(2,6-dichlorophenyl)-3-hydroxy-2-mercaptocyclohex-2-enones as potent inhibitors of human lactate dehydrogenase. Author is Labadie, Sharada; Dragovich, Peter S.; Chen, Jinhua; Fauber, Benjamin P.; Boggs, Jason; Corson, Laura B.; Ding, Charles Z.; Eigenbrot, Charles; Ge, HongXiu; Ho, Qunh; Lai, Kwong Wah; Ma, Shuguang; Malek, Shiva; Peterson, David; Purkey, Hans E.; Robarge, Kirk; Salphati, Laurent; Sideris, Steven; Ultsch, Mark; VanderPorten, Erica; Wei, BinQing; Xu, Qing; Yen, Ivana; Yue, Qin; Zhang, Huihui; Zhang, Xuying; Zhou, Aihe.

Optimization of 5-(2,6-dichlorophenyl)-3-hydroxy-2-mercaptocyclohex-2-enone using structure-based design strategies resulted in inhibitors with considerable improvement in biochem. potency against human lactate dehydrogenase A (LDHA). These potent inhibitors were typically selective for LDHA over LDHB isoform (4-10 fold) and other structurally related malate dehydrogenases, MDH1 and MDH2 (>500 fold). An X-ray crystal structure of enzymically most potent mol. bound to LDHA revealed two addnl. interactions associated with enhanced biochem. potency.

In some applications, this compound(16588-26-4)Product Details of 16588-26-4 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Can You Really Do Chemisty Experiments About 16588-26-4

In some applications, this compound(16588-26-4)Category: alcohols-buliding-blocks is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Category: alcohols-buliding-blocks. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 3-Bromo-4-chloronitrobenzene, is researched, Molecular C6H3BrClNO2, CAS is 16588-26-4, about Development of a Tripeptide Mimetic Strategy for the Inhibition of Protein Farnesyltransferase. Author is Kothare, Mohit A.; Ohkanda, Junko; Lockman, Jeffrey W.; Qian, Yimin; Blaskovich, Michelle A.; Sebti, Said M.; Hamilton, Andrew D..

This paper describes the development of a novel terphenyl-based tripeptide mimetic of the CAAX carboxy terminal sequence of Ras. We employ a concise synthesis to form a series of differently functionalized terphenyl inhibitors of protein farnesyltransferase (PFTase), exemplified by I [R = (S)-HSCH2CH(NH2)CH2- (II); R = HS-3-C6H4C(O)- (III); R = HSCH2CH2C(O)- (IV)]. The key reaction in the synthesis of the terphenyl Me ester, and therefore III and IV, was the Pd-catalyzed chemoselective Suzuki cross-coupling of 3-bromo-4-chloronitrobenzene with an appropriate boronic acid derivative utilizing a com. available, electron rich phosphine ligand. We further show that II is a potent inhibitor of PFTase.

In some applications, this compound(16588-26-4)Category: alcohols-buliding-blocks is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The effect of reaction temperature change on equilibrium 16588-26-4

Compounds in my other articles are similar to this one(3-Bromo-4-chloronitrobenzene)COA of Formula: C6H3BrClNO2, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 3-Bromo-4-chloronitrobenzene(SMILESS: BrC1=C(C=CC(=C1)[N+](=O)[O-])Cl,cas:16588-26-4) is researched.Formula: C7H7NO. The article 《L-(-)-Quebrachitol as a Ligand for Selective Copper(0)-Catalyzed N-Arylation of Nitrogen-Containing Heterocycles》 in relation to this compound, is published in Journal of Organic Chemistry. Let’s take a look at the latest research on this compound (cas:16588-26-4).

L-(-)-Quebrachitol (QCT) was found as a ligand of copper powder for selective N-arylation of nitrogen-containing heterocycles with aryl halides. Furthermore, another potential catalytic system (copper powder/QCT/t-BuOK) was successfully adapted to unactivated aryl chlorides.

Compounds in my other articles are similar to this one(3-Bromo-4-chloronitrobenzene)COA of Formula: C6H3BrClNO2, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Never Underestimate the Influence Of 16588-26-4

Compounds in my other articles are similar to this one(3-Bromo-4-chloronitrobenzene)Product Details of 16588-26-4, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Efficient Discovery of Potent Anti-HIV Agents Targeting the Tyr181Cys Variant of HIV Reverse Transcriptase, published in 2011-10-05, which mentions a compound: 16588-26-4, Name is 3-Bromo-4-chloronitrobenzene, Molecular C6H3BrClNO2, Product Details of 16588-26-4.

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) that interfere with the replication of human immunodeficiency virus (HIV) are being pursued with guidance from mol. modeling including free-energy perturbation (FEP) calculations for protein-inhibitor binding affinities. The previously reported pyrimidinylphenylamine 1 (I) and its chloro analog 2 are potent anti-HIV agents; they inhibit replication of wild-type HIV-1 in infected human T-cells with EC50 values of 2 and 10 nM, resp. However, they show no activity against viral strains containing the Tyr181Cys (Y181C) mutation in HIV-RT. Modeling indicates that the problem is likely associated with extensive interaction between the dimethylallyloxy substituent and Tyr181. As an alternative, a phenoxy group is computed to be oriented in a manner diminishing the contact with Tyr181. However, this replacement leads to a roughly 1000-fold loss of activity for 3 (2.5 μM). The present report details the efficient, computationally driven evolution of 3 to novel NNRTIs with sub-10 nM potency toward both wild-type HIV-1 and Y181C-containing variants. The critical contributors were FEP substituent scans for the phenoxy and pyrimidine rings and recognition of potential benefits of addition of a cyanovinyl group to the phenoxy ring.

Compounds in my other articles are similar to this one(3-Bromo-4-chloronitrobenzene)Product Details of 16588-26-4, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Extended knowledge of 16588-26-4

In some applications, this compound(16588-26-4)Name: 3-Bromo-4-chloronitrobenzene is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 3-Bromo-4-chloronitrobenzene, is researched, Molecular C6H3BrClNO2, CAS is 16588-26-4, about Highly Active and Chemoselective Reduction of Halogenated Nitroarenes Catalyzed by Ordered Mesoporous Carbon Supported Platinum Nanoparticles, the main research direction is reduction halogenated nitroarene catalyzed carbon platinum nanoparticle.Name: 3-Bromo-4-chloronitrobenzene.

Highly dispersed Pt nanoparticles (∼2.2 nm) on ordered mesoporous carbon (Pt/CMK-3-HQ) were first prepared through a two-step impregnation route with aqueous solutions of 8-hydroxyquinoline (8-HQ) and H2PtCl6, resp. The Pt/CMK-3-HQ quant. converted various halogenated nitroarenes to the corresponding haloanilines using hydrazine hydrate with unprecedented activities (e.g., turnover frequency for o-chloronitrobenzene was 30.2 s-1) and exhibited high stability with 20 cycles without decrease in catalytic efficiency. The high activity and chemoselectivity of Pt/CMK-3-HQ were attributed to the cooperation effect between Pt and N species, promoting cleavage of hydrazine to generate more Pt-H- and N-H+ species for reduction of nitro groups and weakening the interaction between halogen groups and Pt atoms for activation of C-halogen bonds.

In some applications, this compound(16588-26-4)Name: 3-Bromo-4-chloronitrobenzene is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Some scientific research about 16588-26-4

In some applications, this compound(16588-26-4)Formula: C6H3BrClNO2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Formula: C6H3BrClNO2. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 3-Bromo-4-chloronitrobenzene, is researched, Molecular C6H3BrClNO2, CAS is 16588-26-4, about Ethyl Cyanoacetate: A New Cyanating Agent for the Palladium-Catalyzed Cyanation of Aryl Halides. Author is Zheng, Shuyan; Yu, Chunhui; Shen, Zhengwu.

A new Pd-catalyzed cyanation reaction has been discovered using Et cyanoacetate as the cyanating reagent. A variety of electron-rich and electron-deficient aryl halides were efficiently converted into their corresponding nitriles in good to excellent yields.

In some applications, this compound(16588-26-4)Formula: C6H3BrClNO2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The Absolute Best Science Experiment for 16588-26-4

In some applications, this compound(16588-26-4)Synthetic Route of C6H3BrClNO2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 16588-26-4, is researched, Molecular C6H3BrClNO2, about Efficient and recyclable bimetallic Co-Cu catalysts for selective hydrogenation of halogenated nitroarenes, the main research direction is nitroarene selective hydrogenation cobalt copper recyclable catalyst.Synthetic Route of C6H3BrClNO2.

Silica supported N-doped carbon layers encapsulating Co-Cu nanoparticles (Co1Cux@CN/SiO2) were prepared by a one-step impregnation of Co(NO3)2·6H2O, Cu(NO3)2·3H2O, urea and glucose, following in situ carbothermal reduction Effects of Cu contents on the catalytic performance of the Co1Cux@CN/SiO2 catalysts were investigated for selective hydrogenation of p-chloronitrobenzene to p-chloroaniline. The Co1Cu0.30@CN/SiO2 with Cu/Co molar ratio of 0.30:1 presented much higher activity and stability than the monometallic Co@CN/SiO2 catalyst. The addition of Cu into Co1Cux@CN/SiO2 catalysts had favorable effects on the formation of highly active Co-N sites and N-doped carbon layer. The role of the N-doped carbon layer was to protect the Co from oxidation by air, and the Co1Cu0.30@CN/SiO2 could be reused for at least 12 cycles without decrease in catalytic efficiency. Mechanistic and in situ IR studies revealed that the interaction effect between the Co and Cu atoms made the surface of Co highly electron rich, which decreased adsorption of halogen groups and resulting in the enhanced selectivity during chemoselective hydrogenation of halogenated nitroarenes for a wide scope of substrates.

In some applications, this compound(16588-26-4)Synthetic Route of C6H3BrClNO2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

New learning discoveries about 16588-26-4

In some applications, this compound(16588-26-4)Safety of 3-Bromo-4-chloronitrobenzene is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Ohkanda, Junko; Lockman, Jeffrey W.; Kothare, Mohit A.; Qian, Yimin; Blaskovich, Michelle A.; Sebti, Said M.; Hamilton, Andrew D. researched the compound: 3-Bromo-4-chloronitrobenzene( cas:16588-26-4 ).Safety of 3-Bromo-4-chloronitrobenzene.They published the article 《Design and Synthesis of Potent Nonpeptidic Farnesyltransferase Inhibitors Based on a Terphenyl Scaffold》 about this compound( cas:16588-26-4 ) in Journal of Medicinal Chemistry. Keywords: terphenylcarboxylate aminomercaptopropylamino imidazolylmethylamino preparation farnesyl transferase inhibitor. We’ll tell you more about this compound (cas:16588-26-4).

By modification of key carboxylate, hydrophobic, and zinc-binding groups projected from a sterically restricted terphenyl scaffold, a series of simple and nonpeptide mimetics of the Cys-Val-Ile-Met tetrapeptide substrate of protein farnesyltransferase (FTase) have been designed and synthesized. A crystal structure of 4-nitro-2-phenyl-3′-methoxycarbonylbiphenyl shows that the terphenyl fragment provides a large hydrophobic surface that potentially mimics the hydrophobic side chains of the three terminal residues in the tetrapeptide. 2-Phenyl-3-{N-[1-(4-cyanobenzyl)-1H-imidazol-5-yl]methyl}amino-3′-carboxylbiphenyl, in which the free thiol group was replaced with a 1-(4-cyanobenzyl)imidazole group, shows submicromolar inhibition activity against FTase in vitro and inhibits H-Ras processing in whole cells.

In some applications, this compound(16588-26-4)Safety of 3-Bromo-4-chloronitrobenzene is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

New explortion of 16588-26-4

In some applications, this compound(16588-26-4)Safety of 3-Bromo-4-chloronitrobenzene is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《o-Halogenated p-nitroaniline and its derivatives》. Authors are Korner, G.; Contardi.The article about the compound:3-Bromo-4-chloronitrobenzenecas:16588-26-4,SMILESS:BrC1=C(C=CC(=C1)[N+](=O)[O-])Cl).Safety of 3-Bromo-4-chloronitrobenzene. Through the article, more information about this compound (cas:16588-26-4) is conveyed.

When p-NO2C6H4NH2 is dissolved or suspended in HCl and Cl or Br added a mixture, difficult to sep., of mono- and dihalogenated anilines with the halogen in the o-position is formed. If, however, gaseous Cl (mol. ratio 1 : 1) is passed into the b. HCl solution 2,4-Cl(O2N)C6H3NH2 is almost the sole product. This derivative mixed with some di-Cl derivative is obtained on chlorinating at -o°(Casella & Co., Ger. Pat., 109,189). At room temperature, on adding Cl slowly to the HCl solution, the di-Cl deriv, + quinone are formed. Chlorinating by Noelting’s method, using Ca(ClO)2, gave mixtures Similar results were obtained with Br. These derivatives are obtained by warming 1-nitro-3,4-dibromo (or dichloro) benzene with alc. NH3 in the scaled tube at 190°. The NH2 group substitutes p to NO2. By halogenating these monohalogen derivatives it is possible to get derivatives with 2 different halogens in the same ring. The action of ClI on a glac. AcOH solution of p-NO2C6H4NH2 gives mixtures from which the mono- and di-I derivatives can be separated by EtOH. 1-Nitro-3-chloro-4-aniline, bright yellow needles from hot H2O, m. 104.5°; acetyl derivative, straw-yellow flat prisms from EtOH, m. 139°. Diazotizing in H2SO4 or HNO3 suspension with gaseous HNO2 gives the diazo compound which, by way of the perbromide, goes into 1-nitro-3-chloro-4-bromobenzene, prisms from CHCl2, m. 62°. 1-Nitro-3-chloro-4-iodobenzene, almost colorless needles from EtOH, m. 103°, is obtained similarly, by way of the periodide. 1-Nitro-3-bromo-4-aniline, bright yellow needles, m. 104.5°, which with Ac2O gives the monoacetyl derivative, flat prisms, m. 114°, and the diacetyl derivative, short fat prisms, m. 132°. also from the mono derivative, by the action of Ac2O + traces of POCl3. Diazotizing and halogenating as above gives 1-nitro-3-bromo-4-chlorobenzene, white or colorless prisms, volatil with steam, m. 61°, is identical with the compound similarly obtained from 2,5-Cl(O2N)C6H3NH2. 1-Nitro-3-bromo-4-iodobenzene, prisms from AcOEt, m. 106°, was obtained similarly. 1-Nitro-3-iodo-4-aniline presents 2 forms: (1) stable yellow-red prisms, and (2) the labile forms golden yellow plates in C6H6, below 17°, m. 109°; monoacetyl derivative, bright yellow prisms; diacetyl derivative, more soluble than the mono compound, white needles. The diazo compound, on adding Cl, gives 1-nitro-3-iodo-4-chlorobenzene, needles, m. 78°, identical with the compound obtained similarly with I from 2,5-Cl(O2N)C6H2NH2. 1-Nitro-3,5-dichloro-4-aniline, yellow shining needles, m. 195°, slightly soluble in dilute and concentrate inorganic acids, unchanged by fuming HNO3 in the cold. To diazotize suspend in HNO3 (d. 1.38) and add gaseous HNO2 at o°; on diluting the explosive diazonium nitrate seps., fairly soluble in H2O. Ac2O + traces of POCl3 give the monoacetyl derivative, almost colorless needles, m. 215°, and the diacetyl derivative, monoclinic (Artini, Rend. ist. lombardo sci. lett., [2] 45, 1912), prisms, m. 142.5°, d. 1.565, more soluble than the mono compound In absolute EtOH + some concentrate H2SO4 + EtONO it gives 1-nitro-3,5-dichlorobenzene, plates, m. 65.4°, which on reducing with Sn + HCl gives 3,5-dichloroaniline, needles, m. 51.5°. The latter, by replacing NH3 with Cl, gives 1,3,4-trichlorobenzene, white needles, to. 63.5°, which is also obtained from 2,4,6-Cl3C8H2NH2, m. 77.5°, by replacing NH3, with H. 3,5-Cl2C4H3NH2 by replacing NH2 with Br gave 1-bromo-3,5-dichlorobenzene, needles, m. 75.8°. 1-Iodo-3,5-dichlorobenzene, m. 54°, was obtained similarly and is identical with that prepared similarly from 2,4,6-ICl2C6H2NH2, m. 84°. Anilines containing 3 identical halogen ats. in the 2,4,6-positions may be obtained by direct halogenation of PhNH2 of which they are the end products. The mixed halogenated anilines are made from anilines halogenated in p-position by adding two halogens (Br or ClI) in the o-position in glac. AcOH. o,p- or o,o-dihalogenanilines may even be used, but displacing of weak halogens may take place. All of the theoretically possible trihalogenbenzenes can be obtained by thus substituting halogen for NH2 in anilines. 2,6,4-Cl2(O2N)C6H2NH2 gives 1-nitro-3,4,5-trichlorobenzene, bright yellow prisms, m. 72.5°, volatil with steam; reduction and elimination of NH2 gives 1,2,3-C6H2Cl3, identical with that from 2,6-Cl2C6H3NH2 by the same method. 1-Nitro-3,5-dichloro-4-bromobenzene, from the above aniline, yellow. prisms, m. 88°, volatile with steam; similarly 1-nitro-3,5-dichloro-4-iodobenzene, yellow prisms, m. 154.8°, less volatile; reduction, etc., gives 1,3-dichloro-2-iodobenzene, thin plates, m. 68°, volatile with steam, also from 3,6-C;2C4H3NH2 with I. p-NO3 C4H4NH2 + Br gives 1-nitro-3,5-dibromo-4-aniline, yellow plates, m. 202.5°; Ac2O as above gives the monoacetyl derivative, colorless needles or triclinic prisms, isomorphous with the di-Cl compound, and the diacetyl derivative, prisms, m. 136°, triclinic pinacoidal, a : b : c = 1.0901 : 1 : 0.8325, a = 88° 43′ 4”. β = 70° 49′ 34”. γ = 93° 25′ 39”, d. 1.939.3 Diazotizing the above or 2,4.6-Br2(O2N)C5H2NH3 with EtONO, etc., gives 1-nitro-3,5-dibromobenzene, almost colorless needles, m. 104.5°; on reduction with Sn + HCl, etc., it gives sym.-dibromochlorobenzene, m. 119°, with Cl, or dibromoiodobenzene, m. 124.8°, with 1. Both are easily volatil with steam and may be prepared from the corresponding anilines and the latter also from 2,4,6-IBr2C6H2NH2. 1-Nitro-3,4,5-tribromobenzene, from the o,o-dibromoaniline by replacing NH3 with Br, yellowish prisms, m. 111.9° on reduction, etc., gives 1,2,3-C6H3Br3, m. 87.8°. 1-Nitro-3,5-dibromo-4-chlorobenzene from the same aniline, yellowish prisms, m. 92-7°, on reduction, etc., gives 2,6-Br2C6H3Cl, m. 71°, identical with the compound similarly obtained from 2,6-Br2C6H3NH2 by replacing NH2 with Cl. 1-Nitro-3,5-dibromo-4-iodobenzene, from 2,6,4-Br2(O2N)C6H2NH2, prisms, 135.5°, cannot be reduced to the aniline. The 2,6-Br2C6H2I was obtained from 2,6-Br2C6H3NH2, prisms, m. 72°. 1-Nitro-3,5-diiodo-4-aniline, from p-NO2C6H4NH2 + ClI in AcOH, yellow needles; m. 245°; monoacetyl derivative, yellow needles, m. 249°; diacetyl derivative, paler yellow prisms, m. 171°, triclinic pinacoidal, a : b : c = 0.9682 : 1 : O.7260, α = 83° 6’43”, β = 76°8’29”, γ = 99° 42′ 44”, d. 2.290. 1-Nitro-3,5-diiodobenzene, from the preceding, difficultly volatile with steam, yellowish prisms, m. 104.5°, on reducing with FeSO4 + NH3 gives 3,5-I2C6H2NH3, needles, m. 110°. 2,6,4-I2ClC6H2NH2 gave 1,3-diiodo-5-chlorobenzene, needles, m. 101°, discolors brown in the light. Similarly the 5-bromoaniline gave 1,3-diiodo-5-bromobenzene, m. 140°, slightly volatile with steam. 1,3,5-Triiodobenzene, from 2,4,6-I2C6H2NH2 or 3.5-I2C6H3NH2, opaque needle, m. 184.2°. Decompose of 2,6,4-I2(O2N)C6H2N2NO3 with b. aqueous Cu2Cl2 gave 1-nitro-3,5-diiodo-4-chlorobenzene, needles, m. 110°; reduction with FeSO4 + NH3 gives a poor yield, (NH4)2S gives a better yield of the aniline together with some S-containing compound The aniline gives 2,6-I2C6H3Cl, rhombic plates, m. 82°. 2,6,4-I2(O2N)(C6H2NH2 gives 1-nitro-3,5-diiodo-4-bromobenzene, white needles from EtOH, yellow prisms from CHCl3 m. 125.4°, and 1-nitro-3,4,5-triiodobenzene, yellow prisms from EtOH, contain C6H6 of crystallization when crystallized from C6H6; reduction with FeSO4 + NH3 gives 3,4,5-triiodoaniline with difficulty; (NH4)2S gives sym.-I2C6H2NH2. The I2C6H2NH2 gives 1,2,3-C6H2I2 on changing NH2 for H, m. 116°, which is identical with that from 2,3-I2C6H3NH2. 2,4-Cl(O2N)C6H3NH2 + Br gives 1-nitro-3-chloro-5-bromo-4-aniline, bright Yellow needles, m. 177.4°; monoacetyl derivative, straw-yellow needles, m. 224°; diacetyl derivative, prisms or plates, m. 139°, monoclinic, prismatic, a : b : c = 1.1127 : 1 : 0.8509, β = 70-36°, d. 1-749. 1-Nitro-3-chloro-5-bromobenzene, from the above aniline, plates, m. 81.2°. and this on reducing with Sn + HCl, etc., gives 3-chloro-5-bromoaniline, needles, or prisms. The latter, as well as 2,4,6-BrClIC6H2NH2, m. 110.5°, gives 1-chloro-3-bromo-5-iodobenzene, needles, m. 85.8°. 1-Nitro-3,4-dichloro-5-bromobenzene, yellowish prisms, m. 82.5°, 1-Nitro-3,4-dibromo-5-chlorobenzene, yellowish prisms, m. 99.5°, and 1-nitro-3-chloro-4-iodo-5 bromobenzene, needles, 159°, by replacing NH2 with a halogen in the preceding nitroaniline. 1,2-Dibromo-3-chlorobenzene, by reducing 3,4,5-Br2ClC6H2NO2, rhombic plates. m. 72.6°. 2,4-Cl(O2N)C6H2NH22, in HOAc + ClI gives 1-nitro-3-chloro-5-iodo-4-aniline, bright yellow needles, 195°; monoacetyl derivative, white prisms, m. 207°; diacetyl derivative, prisms, m. 113°, monoclinic, a : b : c = 1.038 :-1 : 0.799, β = 71.44°, d. 1.913. This aniline gives 1-nitro-3-chloro-5-iodobenzene, yellow prisms, m. 70.4° by replacing NH2 with Cl. 1-Nitro-3,4-dichloro-5-iodobenzene, from the aniline with Cl, bright yellow prisms, m. 59°, is not easily reduced by FeSO4 + NH3, but Sn + HCl gives 3,5-CHC6H3NH2, plates, m. 69.8°; with Br the aniline gives 1-nitro-3-chloro-4-bromo-5-iodobenzene, almost colorless needles, m. 95°; and with I it gives 1-nitro-3-chloro-4,5-diiodobenzene, almost colorless needles, m. 146.5°. 3,4,5-Cl2IC6H2NO2 + (NH4)2S in EtOH gives 3,4-Cl2C6H3NH2. 2,4-Br(O2N)C6H3NH2 + CH in HOAc gives 1-nitro-3-bromo-5-iodo-4-aniline, needles, m. 221°; monoacetyl derivative, yellowish prisms, m. 226°; diacetyl derivative, prisms, m. 134°, triclinic pinacoidal, a : b : C = 0.9470 : 1 : 0.7288, α = 83° 59′ 54”, β = 77° 30′ 18”, γ = 99° 6′ 14”, d.2.112. 1-Nitro-3-bromo-5-iodobenzene, by replacing NH2 with H in the preceding aniline, needles, m. 97.5°; 1-nitro-3-bromo-4-chloro-5-iodobenzene, by replacing NH2 with Cl, yellowish prisms or colorless needles, m. 84°.

In some applications, this compound(16588-26-4)Safety of 3-Bromo-4-chloronitrobenzene is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

A new synthetic route of 16588-26-4

In some applications, this compound(16588-26-4)HPLC of Formula: 16588-26-4 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

HPLC of Formula: 16588-26-4. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: 3-Bromo-4-chloronitrobenzene, is researched, Molecular C6H3BrClNO2, CAS is 16588-26-4, about Optimization of Potent ATAD2 and CECR2 Bromodomain Inhibitors with an Atypical Binding Mode. Author is Lucas, Simon C. C.; Atkinson, Stephen J.; Bamborough, Paul; Barnett, Heather; Chung, Chun-wa; Gordon, Laurie; Mitchell, Darren J.; Phillipou, Alexander; Prinjha, Rab K.; Sheppard, Robert J.; Tomkinson, Nicholas C. O.; Watson, Robert J.; Demont, Emmanuel H..

Most bromodomain inhibitors mimic the interactions of the natural acetylated lysine (KAc) histone substrate through key interactions with conserved asparagine and tyrosine residues within the binding pocket. Herein we report the optimization of a series of Ph sulfonamides that exhibit a novel mode of binding to non-bromodomain and extra terminal domain (non-BET) bromodomains through displacement of a normally conserved network of four water mols. Starting from an initial hit mol., we report its divergent optimization toward the ATPase family AAA domain containing 2 (ATAD2) and cat eye syndrome chromosome region, candidate 2 (CECR2) domains. This work concludes with the identification of (R)-55 (GSK232)(I), a highly selective, cellularly penetrant CECR2 inhibitor with excellent physicochem. properties.

In some applications, this compound(16588-26-4)HPLC of Formula: 16588-26-4 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts