Extended knowledge of 2-Phenylpropane-1,3-diol

The chemical industry reduces the impact on the environment during synthesis 1570-95-2, I believe this compound will play a more active role in future production and life.

Electric Literature of 1570-95-2, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.1570-95-2, name is 2-Phenylpropane-1,3-diol, molecular formula is C9H12O2, molecular weight is 152.19, as common compound, the synthetic route is as follows.

A flask was charged with 1.00 part of F-Diol and 9.50 parts of THF. The resulting solution was treated with 2.39 parts of 1,1′-carbonyldiiumidazole (CDI) in a single portion. After several hours a heavy precipitate formed which was stirred an additional 18-24 h. Next, 1.00 part of powdered activated molecular sieves (4 , 25mu) was added followed by 3.4 parts of ammonium carbonate. The slurry was stirred for 18-24 h, then treated with an additional 3.4 parts of ammonium carbonate. After an additional 18-24 h, the reaction mixture was allowed to settle for 2-24 h and the supernatant was removed. The remaining slurry was treated with ethyl acetate (5 parts), stirred, and filtered to remove solids. The filter cake was washed three times with 2.5 parts each of ethyl acetate. The organic phases were combined and concentrated to an oil, then dissolved in 5 parts ethyl acetate, and washed with 2.5 parts of water then 3 parts of 6 N hydrochloric acid. (An additional wash may be necessary if the pH of the aqueous acid wash is still basic by pH paper.) The ethyl acetate layer was then washed with 3 parts brine solution followed by 3 parts of sodium bicarbonate. The organic layer was dried over 1.0 part sodium sulfate, filtered, and concentrated in vacuo, while maintaining a bath temperature of 60-80 C., to a light-syrup (leaving approximately 1-2 parts ethyl acetate). This solution was then added to 5 parts of MTBE with stirring at which point crystallization commenced. The resulting white slurry was stirred 14-24 h and the solids were isolated by filtration and dried in vacuo at 60 C. The yield of crude 2-fluoro-2-phenyl-1,3-propanediol dicarbamate is typically 78-85% of theoretical. HPLC analysis indicated >98-99% (AUC) purity along with 0.5% 2-phenyl-1,3-propanediol and 0.3-0.5% 2-fluoro-2-phenyl-1,3-propanediol monocarbamate (?F-monocarbamate?). The crude product was further purified by dissolving 1.00 part fluorofelbamate in 10 parts of hot methanol-water (1:4). Cooling to ambient temperature and stirring overnight, followed by filtration, afforded the title compound as a white crystalline solid. Yields of crystallization processes are typically 93-97%. HPLC analysis indicated >99.5% AUC fluorofelbamate. Typically, less than 0.35% felbamate is present by HPLC. 1H-NMR (d6-DMSO, 500 MHz) 67 7.50-7.20 (m, 5 H, PhH), 6.8-6.2 (bd, 4 H, NH2), 4.42-4.20 (m, 4 H, CH2). Under the HPLC conditions described for Example 3, the retention times were: F-Diol (5.8 min), Diol (6.2 min), monocarbamate (8.8 min), F-monocarbamate (9.3 min), felbamate (12.3 min), fluorofelbamate (15.8 min).

The chemical industry reduces the impact on the environment during synthesis 1570-95-2, I believe this compound will play a more active role in future production and life.

Reference:
Patent; Mortko, Henry; He, Weixuan; Andersen, Marc W.; Dotse, Anthony K.; Li, Jie; US2006/241298; (2006); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts