Gao, Pinyi et al. published their research in International Journal of Food Science and Technology in 2022 | CAS: 149-32-6

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.COA of Formula: C4H10O4

Purification, characterisation and antioxidant properties of a novel polysaccharide from Physalis pubescens L. fruits was written by Gao, Pinyi;Zhang, Xingyue;Wang, Ziwei;Liu, Changfeng;Xu, Shuangshuang;Bian, Jun;Yue, Dandan;Li, Danqi;Zhang, Lixin;Liu, Xuegui. And the article was included in International Journal of Food Science and Technology in 2022.COA of Formula: C4H10O4 This article mentions the following:

Considering the medicinal and edible properties of Physalis pubescens L. fruit, the plant has a long history of cultivation in China. In the current study, a novel polysaccharide (PPL-1) was successfully obtained from P. pubescens fruits using multi-column techniques. The chem. characterization of the polysaccharide was achieved by acid hydrolysis, determination of weight average mol. mass, thermogravimetric and Smith degradation analyses, in addition to UV, Fourier transform IR spectroscopy, one- and two-dimensional NMR spectroscopy. According to the structural analyses, PPL-1 consisted of rhamnose, arabinose, fructose, mannose and glucose with a relative molar ratio of 0.39:0.12:0.02:0.03:0.44. The average mol. weight of PPL-1 was 7.3 kDa and it was mainly composed of (1 → 3) and (1 → 6) linkages. PPL-1 exhibited not only scavenging effects on 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) free radicals but also hydrogen peroxide-induced oxidative stress in SH-SY5Y cells effectively by decreasing malondialdehyde content and increasing total antioxidant capacity, superoxide dismutase and glutathione peroxidase activity levels. In the experiment, the researchers used many compounds, for example, (2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6COA of Formula: C4H10O4).

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.COA of Formula: C4H10O4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lu, Lu et al. published their research in Food Chemistry in 2022 | CAS: 149-32-6

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Name: (2R,3S)-rel-Butane-1,2,3,4-tetraol

Metabolomics analysis of freeze-thaw tolerance enhancement mechanism of ε-poly-L-lysine on industrial yeast was written by Lu, Lu;Zhu, Ke-Xue;Yang, Zhen;Guo, Xiao-Na;Xing, Jun-Jie. And the article was included in Food Chemistry in 2022.Name: (2R,3S)-rel-Butane-1,2,3,4-tetraol This article mentions the following:

Antimicrobial polycationic peptide ε-poly-L-lysine (ε-PL) enhanced the freeze-thaw tolerance of industrial yeast; the enhancement mechanism of ε-PL on yeast was studied. The results showed that a ε-PL coating was observed in ε-PL-treated yeast. After 4 times of freeze-thaw, the cell viability, glycerol content, and CO2 production of 0.6 mg/mL ε-PL-treated yeast were higher than those of untreated yeast, specifically, the cell viability of ε-PL-treated yeast was 87.6%, and that of untreated yeast was 68.5%. Metabolomic results showed that the enhancement mechanism of ε-PL on yeast was related to the promotion of cell membrane-related fatty acid synthesis pathways before freeze-thaw treatment, and the promotion of biosynthesis and glycerophospholipid metabolism pathways after freeze-thaw. Furthermore, ε-PL induced inhibition of the tricarboxylic acid cycle, resulting in a longer stationary phase at the beginning of the freeze-thaw and ultimately providing a higher level of freeze-thaw stress tolerance than untreated yeast. In the experiment, the researchers used many compounds, for example, (2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6Name: (2R,3S)-rel-Butane-1,2,3,4-tetraol).

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Name: (2R,3S)-rel-Butane-1,2,3,4-tetraol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Raczkowska, Ewa et al. published their research in Antioxidants in 2022 | CAS: 149-32-6

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Quality Control of (2R,3S)-rel-Butane-1,2,3,4-tetraol

Chokeberry Pomace as a Component Shaping the Content of Bioactive Compounds and Nutritional, Health-Promoting (Anti-Diabetic and Antioxidant) and Sensory Properties of Shortcrust Pastries Sweetened with Sucrose and Erythritol was written by Raczkowska, Ewa;Nowicka, Paulina;Wojdylo, Aneta;Styczynska, Marzena;Lazar, Zbigniew. And the article was included in Antioxidants in 2022.Quality Control of (2R,3S)-rel-Butane-1,2,3,4-tetraol This article mentions the following:

In this study, an attempt was made to develop shortcrust pastries containing different amounts of chokeberry pomace (0%, 10%, 30%, 50%), modulating their degree of sweetness via the application of sucrose or erythritol. The obtained products were assessed for their nutritional value (energy value, protein, fats, dietary fiber, sugars, minerals). Bioactive compounds, as well as antioxidant and anti-diabetic properties in an in vitro model and sensory attributes, were also analyzed. Increasing the proportion of chokeberry pomace in shortcrust pastries improved their nutritional value, especially their energy value (reduction of nearly 30% for shortcrust pastries with 50% pomace sweetened with erythritol), nutritional fiber content (10-fold higher in shortcrust pastries with the highest proportion of pomace) and potassium, calcium, magnesium, and iron content. Chokeberry pomace was also a carrier of 14 bioactive compounds The most beneficial antioxidant and anti-diabetic effect was shown for shortcrust pastries containing 50% chokeberry pomace. In addition, it was shown that the use of erythritol as a sweetener has a beneficial effect on the perception of sensory attributes. Finally, it was shown that the developed products could be excellent alternatives to traditional shortcrust pastries and, at the same time, be a good way to utilize waste from the fruit industry. In the experiment, the researchers used many compounds, for example, (2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6Quality Control of (2R,3S)-rel-Butane-1,2,3,4-tetraol).

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Quality Control of (2R,3S)-rel-Butane-1,2,3,4-tetraol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Mawire, Ashmore et al. published their research in International Journal of Energy Research in 2022 | CAS: 149-32-6

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Computed Properties of C4H10O4

Experimental study on the discharge characteristics of two eutectic solder packed bed latent heat storage systems was written by Mawire, Ashmore;Ekwomadu, Chidiebere;Lefenya, Tlotlo;Shobo, Adedamola. And the article was included in International Journal of Energy Research in 2022.Computed Properties of C4H10O4 This article mentions the following:

Metallic solder based PCMs possess higher thermal conductivities, larger storage masses and exhibit lower subcooling effects compared to their organic or inorganic counterparts. It is thus justified to investigate their potential usage for medium temperature applications. These solders are relatively expensive and can be combined with cheaper PCMs in cascaded storage systems which are more thermodynamically efficient compared to single PCM systems as reported recently. The aim of the research is thus to compare two packed bed storage systems during discharging cycles using eutectic solder (Sn63/Pb37), that is widely available worldwide. The single PCM system (40 capsules) consists of encapsulated spheres of eutectic solder, whereas the second cascaded system consists of encapsulated spheres of eutectic solder and erythritol in an equal storage ratio in the tank. For the cascaded system, the eutectic solder capsules are placed at the top and erythritol at the bottom of the storage tank (20 capsules at the top and 20 at the bottom). The effect of the discharging flow-rates of 4 mL/s, 6 mL/s and 8 mL/s is investigated in relation to the temperature profiles, energy rates and exergy rates. Increasing the flow-rate, increases heat transfer rate thus shortening the discharging time as well as increasing thermal profile reversals during discharging. The peak energy and exergy rates increase with the increase in the flow-rate for the two storage systems. The single PCM system shows slightly higher average energy and exergy rates compared to the cascaded system possibly due to its higher thermal conductivity The cascaded PCM system shows higher average stratification numbers at all the flow rates considered. The non-cascaded system exhibited slightly higher exergy recovery efficiencies compared to the cascaded PCM system possibly due to its higher thermal conductivity at all flow-rates considered. The effect of the initial discharging temperature is also investigated with a discharging flow-rate of 6 mL/s after charging with set heater temperatures of 260°C, 280°C and 300°C, resp. Comparable thermal profiles are seen for both systems for the three set temperatures; however, the single PCM system shows slightly higher storage temperatures The single PCM shows slightly higher but comparable peak and average discharging energy rates compared to the cascaded system. The exergy rates for the two systems are also comparable. However, the cascaded system shows slightly higher exergy rate values for the lowest set temperature whereas the single PCM system shows slightly higher exergy rate values for the other two set temperatures Energy and exergy rates are almost independent of the initial storage tank temperatures induced by different set charging temperatures The average stratification number shows no correlation with set temperature for both storage systems. The cascaded system shows slightly higher average stratification numbers at different set temperatures Exergy recovery efficiencies for different set heater temperatures are comparable for the two storage systems and vary only marginally with the increase in the set temperature Overall, the effect of the flow-rate is more pronounced than the effect of the set heater temperature In the experiment, the researchers used many compounds, for example, (2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6Computed Properties of C4H10O4).

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Computed Properties of C4H10O4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts