An investigation by thermal analysis of glycosidic natural sweeteners was written by Santana, Naienne da S.;Mothe, Cheila G.;de Souza, Marcio Nele;Mothe, Michelle G.. And the article was included in Journal of Thermal Analysis and Calorimetry.Formula: C4H10O4 This article mentions the following:
The demand for non-nutritive sweeteners of natural origin has increased in recent years, mainly driven by health concerns and the quest for a healthier lifestyle. This work aimed to investigate the content of steviol glycosides from Stevia rebaudiana Bertoni and cucurbitane glycosides from monk fruit in com. samples of sweeteners using thermal anal. techniques (TG/DTG, DTA, and DSC), FTIR, EDS. Four com. samples were analyzed based on steviol glycosides (E, E2, E3, E4) and one sample based on cucurbitane glycosides (M1). The thermogravimetry (TG) results showed that the thermal stability order of the samples till 200 掳C was equal to E4 > M1 鈮?E2 > E > E3. Despite being marketed based on different natural glycosides, thermal anal. techniques showed similar thermal profiles between E2 and M1 samples. The DSC curves of these samples showed clear erythritol melting events, and the FTIR spectra confirmed the presence of this polyol in E2 and M1 samples. On the other hand, the DSC curve and the FTIR spectrum confirmed the presence of xylitol in the composition of the E4 sample. In the experiment, the researchers used many compounds, for example, (2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6Formula: C4H10O4).
(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Formula: C4H10O4
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts