Application of cas: 148-51-6 | Naito, Takeo et al. published an article in 1959

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 SDS of cas: 148-51-6) is a vitamin B6 antimetabolite with diverse biological activities. It inhibits transport of pyridoxine , pyridoxal, and pyridoxamine in and reduces growth of S. carlsbergensis cells. DOP inhibits sphingosine-1-phosphate (S1P) lyase and reduces cyclic stretch-induced apoptosis in alveolar epithelial MLE-12 cells.

SDS of cas: 148-51-6《Synthesis of vitamin B6 derivatives. Catalytic reduction of hydroxymethyl group substituted in pyridine ring》 was published in 1959. The authors were Naito, Takeo;Ueno, Katsujiro, and the article was included in《Yakugaku Zasshi》. The author mentioned the following in the article:

Catalytic reduction of 1.64 g. pyridoxine triacetate-HCl in 32 mL. H2O with 1 g. 10% Pd-C 1.5 h. at normal pressure of H absorbed 240 mL. H and gave 0.7 g. 3,4,6,5-Me3(OH)C5HN.HCl (I), m. 209-12°. Similarly, pyridoxine 4-Et ether HCl salt yielded 52% I, m. 210-12°. The above reaction with 1 mol absorption of H yielded 18% 4,6,3,5-Me2(HOCH2)(HO)C5HN.HCl (II), m. 250° (decomposition), and the mother liquor yielded 31% 3,6,4,5-Me2(EtOCH2)(HO)C5HN.HCl; picrate m. 138°. Catalytic reduction of 0.56 g. 6,3,4,5-Me(AcOCH2)(EtOCH2)(HO)C5HN.HCl in 20 mL. MeOH with 0.8 g. 10% Pd-C showed no absorption of H, the reduction proceeded well by addition of 20 mL. H2O and absorbed 54 mL. H in 2 h., and the product in 10% HCl heated 30 min. at 100° yielded 48.8% 3,6,4,5-Me2(EtOCH2)(HO)C5HN; picrate, m. 138°. Catalytic reduction of 3.76 g. pyridoxal oxime-HCl in 170 mL. H2O and 88 mL. 10% HCl with 4.8 g. 10% Pd-C absorbed 3050 mL. H in 20 h. and yielded 62% 3,6,4,5-Me2(HCl.H2NCH2)(HO)C5HN.HCl (III), m. 262-3° (decomposition); diacetate, C12H16O3N2, m. 176-7°; ditosylate-HCl, m. 194-5°. Catalytic reduction of 0.29 g. 6,3,4,5-Me(AcOCH2)(AcNHCH2)(AcO)C5HN in 8 mL. MeOH and 2.2 mL. 10% HCl-MeOH showed no absorption H but an addition of 10 mL. H2O absorbed 28 mL. H in 2 h. and yielded 100% diacetate of III, m. 174°. Similarly, 0.51 g. pyridoxal-HCl in 20 mL. H2O and 0.5 g. 10% Pd-C yielded 30% II, m. 246-8°. Catalytic reduction of 0.58 g. pyridoxal Et hemiacetal-HCl (IV) in 20 mL. EtOH and 0.5 g. 10% Pd-C (1 mol H absorbed) yielded 79% 6,5,3,4-Me(HO)(CH2OCH2)C5HN.HCl (V), m. 233-4°; picrate m. 186-7°. Similarly, 0.58 g. IV, 20 mL. H2O and 0.5 g. Pd-C yielded 40% II, m. 248-50°; 0.58 g. IV, 20 mL. HCl, 2.7 mL. 10% HCl and 0.5 g. Pd-C yielded 68% V, m. 225-30°. Catalytic reduction of 1.09 g. 2-HOCH2C5H4 N in 15 mL. MeOH and 51 mL. 5% HCl-MeOH with 1 g. Pd-C (260 mL. H absorbed in 2 h.) yielded 90% 2-MeC5H4N (VI); picrate m. 164-5°. Similarly, 1.23 g. 2-MeOCH2C5H4N in 15 mL. MeOH and 51 mL. 5% HCl-MeOH with 0.1 g. Pd-C (255 mL. H absorbed) yielded 91% 2-MeC5H4N; or, 2-AcOCH2C5H4N, in a similar way, yielded 88% 2-MeC5H4N. 2-HOCH2C5H4N.HCl (8 g.) added dropwise into 40 g. SOCl2 with cooling, refluxed 2 h., cooled, 100 mL. C6H6 added and the product filtered off gave 8.8 g. 2-ClCH2C5H4N (VII); picrate m. 146-7°. MeONa (2.72 g. Na and 55 mL. MeOH) treated dropwise with VII in 20 mL. MeOH, refluxed 1 h., the solvent removed and the residue extracted with Et2O gave 4.7 g. 2-MeOCH2C5H4N, b18 76-8°. Similarly are prepared (product, b.p./mm. and m.p. picrate given): 3-MeOCH2C5H4N, 92-4°/20, 117-18°; 4-MeOCH2C5H4N, 91-2°/19, 108-9°. To complete the study, the researchers used 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride (cas: 148-51-6) .

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 SDS of cas: 148-51-6) is a vitamin B6 antimetabolite with diverse biological activities. It inhibits transport of pyridoxine , pyridoxal, and pyridoxamine in and reduces growth of S. carlsbergensis cells. DOP inhibits sphingosine-1-phosphate (S1P) lyase and reduces cyclic stretch-induced apoptosis in alveolar epithelial MLE-12 cells.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cas: 148-51-6 was involved in experiment | Journal of Biological Chemistry 1985

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Category: alcohols-buliding-blocks) is a vitamin B6 antimetabolite with diverse biological activities. It inhibits transport of pyridoxine , pyridoxal, and pyridoxamine in and reduces growth of S. carlsbergensis cells. DOP inhibits sphingosine-1-phosphate (S1P) lyase and reduces cyclic stretch-induced apoptosis in alveolar epithelial MLE-12 cells.

Category: alcohols-buliding-blocksIn 1985, Benecky, Michael J.;Copeland, Robert A.;Hays, Thomas R.;Lobenstine, Eric W.;Rava, Richard P.;Pascal, Robert A. Jr.;Spiro, Thomas G. published 《Resonance Raman spectroscopy of pyridoxal Schiff bases》. 《Journal of Biological Chemistry》published the findings. The article contains the following contents:

Resonance Raman (RR) spectra are reported for amino acid and amine adducts of pyridoxal 5′-phosphate (PLP) and 5′-deoxypyridoxal (5′-dPL) in aqueous solution For the valine adducts, a detailed study was carried out on solutions at pH and pD 5, 9, and 13, values at which the pyridine and imine protons are successively ionized, and on the adducts formed from [15N]valine, α-deuterovaline, and N-methyl-PLP. Good quality spectra were obtained, despite the strong fluorescence of pyridoxal Schiff bases, by adding KI as a quencher, and by exciting the mols. on the blue side of their absorption bands: 406.7 nm (cw K+ laser) for the pH 5 and 9 species (λmax = 409 and 414 nm), and 354.7 nm (pulsed YAG laser, 3rd harmonic) for the pH 13 species (λmax = 360 nm). A prominent band at 1646 cm-1 was assigned to the imine C:N stretch via its 13 cm-1 15N shift. A 12 cm-1 downshift of the band in D2O confirmed that the Schiff base linkage is protonated at pH 9. Deprotonation at pH 13 shifted νC:N from 1646 to 1629 cm-1, values typical of conjugated Schiff bases. The strongest band in the spectrum, at 1338 cm-1, shifted to 1347 cm-1 upon pyridine protonation at pH 5, and was assigned to a ring mode with a large component of phenolate C-O stretch. A shoulder on its low-frequency side was assigned to the C4-C4′ stretch. Large enhancements of these modes could be understood qual. in terms of the dominant resonance structures contributing to the ground and resonant excited states. A number of weaker bands were observed, and assigned to pyridine ring modes. These modes gained significantly in intensity, and the exocyclic modes diminished, when the spectra were excited at 266 nm (YAG laser, 4th harmonic) in resonance with ring-localized electronic transitions. The experimental procedure involved many compounds, such as 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride (cas: 148-51-6) .

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Category: alcohols-buliding-blocks) is a vitamin B6 antimetabolite with diverse biological activities. It inhibits transport of pyridoxine , pyridoxal, and pyridoxamine in and reduces growth of S. carlsbergensis cells. DOP inhibits sphingosine-1-phosphate (S1P) lyase and reduces cyclic stretch-induced apoptosis in alveolar epithelial MLE-12 cells.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Stone, William E. et al. published new progress in experiments with the help of cas: 148-51-6

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Related Products of 148-51-6) is a strong antagonist of vitamin B6. Deoxypyridoxine hydrochloride has been used as an analytical reference standard for the quantification of the analyte in food samples using high performance liquid chromatography.

Related Products of 148-51-6《Effects of alterations in the metabolism of γ-aminobutyrate on convulsant potencies》 was published in 1977. The authors were Stone, William E., and the article was included in《Epilepsia》. The author mentioned the following in the article:

Drugs that alter γ-aminobutyrate (GABA) [56-12-2] metabolism and presumably affect the availability of GABA in synaptic regions were tested for their relative effects on the potencies of 4 convulsants: 3-mercaptopropionate (3-MP) [107-96-0], pentamethylenetetrazole (PTZ) [54-95-5], bicuculline [485-49-4], and picrotoxin [124-87-8] in mice. Aminooxyacetic acid hemichloride [2921-14-4] given prior to the convulsant tended to decrease the potency of 3-MP more than that of PTZ. It decreased the potency of bicuculline more than that of PTZ but less than that of 3-MP, and did not alter that of picrotoxin. Thiocarbohydrazide (TCH) [2231-57-4], DLC-allylglycine [7685-44-1], and 4-deoxypyridoxine-HCl (DOP) [148-51-6] tended to potentiate 3-MP more than PTZ. The effects of allylglycine on bicuculline and picrotoxin were intermediate. DOP potentiated bicuculline and picrotoxin only to the extent that it potentiated PTZ. TCH resembled DOP in its effect on bicuculline. Valproic acid [99-66-1] decreased the potency of each convulsant; it was most effective against PTZ, slightly less so against 3-MP, and still less effective against bicuculline and picrotoxin. Its anticonvulsive action probably is not primarily via the GABA system. Phenelzine [51-71-8] slightly decreased the potency of bicuculline, but potentiated 3-MP and picrotoxin and did not affect the potency of PTZ. Diacetyl monoxime [57-71-6] was anticonvulsive against PTZ, bicuculline, and picrotoxin, but not against 3-MP. The results do not support the view that bicuculline and picrotoxin induce seizures by blocking GABA-mediated inhibition. The experimental procedure involved many compounds, such as 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride (cas: 148-51-6) .

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Related Products of 148-51-6) is a strong antagonist of vitamin B6. Deoxypyridoxine hydrochloride has been used as an analytical reference standard for the quantification of the analyte in food samples using high performance liquid chromatography.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

New progress of cas: 148-51-6 | Journal of Proteome Research 2011

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) is a strong antagonist of vitamin B6. Deoxypyridoxine hydrochloride has been used as an analytical reference standard for the quantification of the analyte in food samples using high performance liquid chromatography.

Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride《Correlation between protein function and ligand binding profiles》 was published in 2011. The authors were Shortridge, Matthew D.;Bokemper, Michael;Copeland, Jennifer C.;Stark, Jaime L.;Powers, Robert, and the article was included in《Journal of Proteome Research》. The author mentioned the following in the article:

The authors report that proteins with the same function bind the same set of small mols. from a standardized chem. library. This observation led to a quantifiable and rapidly adaptable method for protein functional anal. using exptl. derived ligand binding profiles. Ligand binding is measured using a high-throughput NMR ligand affinity screen with a structurally diverse chem. library. The method was demonstrated using a set of 19 proteins with a range of functions. A statistically significant similarity in ligand binding profiles was only observed between the two functionally identical albumins and between the five functionally similar amylases. This new approach is independent of sequence, structure, or evolutionary information and, therefore, extends the ability to analyze and functionally annotate novel genes. The experimental procedure involved many compounds, such as 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride (cas: 148-51-6) .

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) is a strong antagonist of vitamin B6. Deoxypyridoxine hydrochloride has been used as an analytical reference standard for the quantification of the analyte in food samples using high performance liquid chromatography.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sugiura, Kanematsu et al. published new experimental results with the assistance of cas: 148-51-6

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) is a strong antagonist of vitamin B6. Deoxypyridoxine hydrochloride has been used as an analytical reference standard for the quantification of the analyte in food samples using high performance liquid chromatography.

Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochlorideIn 1956, Sugiura, Kanematsu published 《Merits of ascites tumors for chemotherapeutic screening. I》. 《Annals of the New York Academy of Sciences》published the findings. The article contains the following contents:

Ehrlich ascites, Krebs 2 ascites carcinomas, and sarcoma 180 ascites tumor were used in the present study. Fresh ascites fluid containing 106 cancer cells were injected into mice and the recipient regularly developed large amounts of milky ascites (5 to 20 cc.) in 1 to 2 wk and died in 1 to 3 wk. The tumors had 100% takes and there were generally no spontaneous regressions. The exudates contained 5 to 10% normal cells. For the chemotherapy test, a donor mouse was selected 1 to 2 wk, after inoculation and 2 to 5 mL. of milky fluid withdrawn, the cells counted in a hemocytometer, and a proper dilution made with 0.9% NaCl solution I.p. injections of 0.1 mL. of fluid containing 106 cells was made. Each group of animals was divided into a control and treatment group. The progress of the tumors was recorded by daily weight measurement and by measuring the amount of ascitic fluid 10 days after the inoculation. The inhibition effect was then estimated from the effects on the ascites and the survival. Chemotherapeutic agents were injected in solvents as necessary; 0.5 cc. CM-cellulose, 0.5 cc. peanut oil, 0.1 cc. sesame oil were used. One hundred compounds were tested on all 3 tumors; these consisted of nitrogen mustards, ethyleneimines, phosphoramides, folic acid analogs and other pteridines, carbamates, purines, pyrimidines, formamides, steroids, hormones, enzymes, antibiotics, antivitamins, inorganic salts, and others. In 64% of the tests the response to agents was identical in all 3 tumors. A similar study was made of 54 agents on the solid and ascites form of the Ehrlich carcinoma and sarcoma 180. The ascites form usually showed the greater sensitivity to the carcinostatic agent. And 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride (cas: 148-51-6) was used in the research process.

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) is a strong antagonist of vitamin B6. Deoxypyridoxine hydrochloride has been used as an analytical reference standard for the quantification of the analyte in food samples using high performance liquid chromatography.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cas: 148-51-6 | Balyakina, M. V.published an article in 1966

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Recommanded Product: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) is a strong antagonist of vitamin B6. Deoxypyridoxine hydrochloride has been used as an analytical reference standard for the quantification of the analyte in food samples using high performance liquid chromatography.

Recommanded Product: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride《Synthesis of 2,4-dimethyl-3-hydroxy-5-hydroxymethylpyridine》 was published in 1966. The authors were Balyakina, M. V.;Rubtsov, I. A.;Zhdanovich, E. S.;Preobrazhenskii, N. A., and the article was included in《Zb. Prikl. Khim.》. The author mentioned the following in the article:

2,4-Dimethyl- 3 – hydroxy-5- hydroxymethylpyridine (4- deoxypyridoxine) (I) was synthesized via the following intermediates: 2,4-dimethyl-5-cyano-6-pyridone (II), 2,4-dimethyl-3-nitro-5-cyano-6-pyridone (III), and 2,4-dimethyl-3-nitro-5-cyano-6-chloropyridine (IV). Reduction of IV was carried out in 1 step in dilute HCl over Pd-C. 2,4-Dimethyl-3-amino-5-aminomethylpyridine was converted without isolation to I by treatment with NaNO2. Thus, 33 ml. NH4OH (d20 0.9) was added with stirring to 40 g. EtO2CCH2CN, the mixture cooled with ice to 0-2° and the precipitate filtered off, washed at 0° with 20 ml. cold EtOH, and dried to yield 23.8 g. cyanoacetamide (V), m. 120-2°. The filtrate was evaporated to dryness to yield an addnl. 3.95 g. Acetylacetone (10.0 g.) was added at 70° to 8.4 g. V in 50 ml. MeOH and 1.12 ml. Me2NH to precipitate 88.1% II, m. 293.1-4.2°. A suspension of 4.44 g. II in 15 ml. Ac2O is treated with stirring with 2.3 ml. HNO3 (d20 1.4) and 2.3 ml. Ac2O at 35-40°, and the mixture stirred 2 hrs. at 18-20° and poured upon 23 g. crushed ice, to precipitate 56.4% yellow III, m. 272.0-2.6° (alc.). P2O5 (5.3 g.) is added to a suspension of 3.6 g. III in 36 ml. PhCl, the mixture heated with stirring 3 hrs. at 118-120° the solvent removed at 45-50°/10 mm., the residue treated with 3.6 ml. absolute alc., stirred, and left 8 hrs. at 0-4°, the precipitate filtered off, washed at 0° with 2 ml. alc., and dried, and the residue extracted with petr. ether (b. 60-70°) to give 62.2% yellow IV, m. 114-15°. IV (2.4 g.) in 25 ml. ice water was added to a pre-hydrogenated mixture of 0.10 g. PdCl2 with H2O, HCl, and C, the hydrogenation continued until the theoretical H absorption, the catalyst separated and washed with 2 ml. H2O, 2.4 ml. HCl (d20 1.18) added to the solution and washings, and the solution heated 1.5 hrs. at 80-5° during which 1.6 g. NaNO2 in 5 ml. H2O was added, the heating continued 30 more min. (neg. starch-iodide test), the solution evaporated in vacuo, the residue extracted with absolute alc., the extracts treated with activated C and concentrated until the appearance of crystals, the mixture kept 8 hrs. at 0-4°, and the precipitate filtered off, washed at 0° with 1 ml. alc., and dried to give 42.2% I, m. 256.1-7.2°. To complete the study, the researchers used 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride (cas: 148-51-6) .

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Recommanded Product: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride) is a strong antagonist of vitamin B6. Deoxypyridoxine hydrochloride has been used as an analytical reference standard for the quantification of the analyte in food samples using high performance liquid chromatography.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Explore more uses of cas: 148-51-6 | Journal of Animal Science (Savoy, IL, United States)

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Recommanded Product: 148-51-6) is a vitamin B6 antimetabolite with diverse biological activities. It inhibits transport of pyridoxine , pyridoxal, and pyridoxamine in and reduces growth of S. carlsbergensis cells. DOP inhibits sphingosine-1-phosphate (S1P) lyase and reduces cyclic stretch-induced apoptosis in alveolar epithelial MLE-12 cells.

Hammond, Andrew C.;Carlson, James R. published 《Inhibition of ruminal degradation of L-tryptophan to 3-methylindole in vitro》 in 1980. The article was appeared in 《Journal of Animal Science (Savoy, IL, United States)》. They have made some progress in their research.Recommanded Product: 148-51-6 The article mentions the following:

A closed-system, in vitro ruminal fermentation technique was used to screen 27 compounds for their ability to reduce the conversion of L-tryptophan (TRP) [73-22-3] to 3-methylindole (3MI) [83-34-1] in order to inhibit acute bovine pulmonary edema and emphysema. 20-Desoxysalinomycin [64003-50-5], X-206 [36505-48-3], chloral hydrate [302-17-0], nigericin [28380-24-7], lasalocid [11054-70-9], monensin [17090-79-8], narasin [55134-13-9], and salinomycin [53003-10-4] all reduced 3MI production by >80% at 5 μg/mL without reducing total volatile fatty acid production All of these compounds, except chloral hydrate, are polyether antibiotics. At least part of the inhibition due to monensin and narasin occurs at the level of TRP conversion to IAA [87-51-4].5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride (cas: 148-51-6) were involved in the experimental procedure.

5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 Recommanded Product: 148-51-6) is a vitamin B6 antimetabolite with diverse biological activities. It inhibits transport of pyridoxine , pyridoxal, and pyridoxamine in and reduces growth of S. carlsbergensis cells. DOP inhibits sphingosine-1-phosphate (S1P) lyase and reduces cyclic stretch-induced apoptosis in alveolar epithelial MLE-12 cells.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts